
Chapter 1

LegacyBLAS

1.1 New routines

1.2 C interface to legacy BLAS

This section discusses the proposed C interface to the legacy BLAS in some
detail. Every mention of \BLAS" in this chapter should be taken to mean
the legacy BLAS. Each interface decision is discussed in its own section; also
discussed are other solutions to that particular problem, and the reasons
those options were not chosen.

It is largely agreed among the group (and unanimous among the ven-
dors) that user demand for a C interface to the BLAS is insuÆcient to mo-
tivate vendors to support a completely separate standard. This proposal
therefore con�nes itself to an interface which can be readily supported on
top of the already existing Fortran77 callable BLAS (i.e., the legacy BLAS).

The interface is expressed in terms of ANSI/ISO C. Very few platforms
fail to provide ANSI/ISO C compilers at this time, and for those platforms,
free ANSI/ISO C compilers are almost always available (eg., gcc).

1.2.1 Naming scheme

The naming scheme consists of taking the Fortran77 routine name, makeing
it lower case, and adding the pre�x cblas . Therefore, the routine DGEMM

becomes cblas dgemm.

1

2 CHAPTER 1. LEGACYBLAS

Considered methods

Various other naming schemes have been proposed, such as adding C or
c to the name. Most of these schemes accomplish the requirement of
separating the Fortran77 and C name spaces. It was argued, however, that
the addition of the blas pre�x uni�es the naming scheme in a logical and
useful way (making it easy to search for BLAS use in a code, for instance),
while not placing too great a burden on the typist. The letter c is used to
distinguish this language interface from possible future interfaces.

1.2.2 Indices

The Fortran77 BLAS return indices in the range 1 � I � N (where N is
the number of entries in the dimension in question, and I is the index), in
accordance with Fortran77 array indexing conventions. This allows func-
tions returning indices to be directly used to index standard arrays. The
C interface therefore returns indices in the range 0 � I < N for the same
reason.

The only BLAS routine which involves indices is the function I AMAX.
This function is declared to be of type CBLAS INDEX, which is guaranteed
to be an integer type (i.e., no cast is required when assigning to any integer
type). CBLAS INDEX will usually correspond to size t to ensure any array
can be indexed, but implementors might choose the integer type which
matches their Fortran77 INTEGER, for instance.

1.2.3 Character arguments

All arguments which were characters in the Fortran77 interface are handled
by enumerated types in the C interface. This allows for tighter error check-
ing, and provides less opportunity for user error. The character arguments
present in the Fortran77 interface are: SIDE, UPLO, TRANSPOSE, and DIAG.
This interface adds another such argument to all routines involving two di-
mensional arrays, ORDER. The standard dictates the following enumerated
types:

enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};

enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

1.2. C INTERFACE TO LEGACY BLAS 3

Considered methods

The other two most commonly suggested methods were accepting these ar-
guments as either char * or char. It was noted that both of these options
require twice as many comparisons as normally required to branch (so that
the character may be either upper or lower case). Both methods also suf-
fered from ambiguity (what does it mean to have DIAG='H', for instance).
If char was chosen, the words could not be written out as they can for the
Fortran77 interface (you couldn't write "NoTranspose"). If char * were
used, some compilers might fail to optimize string constant use, causing
unnecessary memory usage.

The main advantage of enumerated data types, however, is that much
of the error checking can be done at compile time, rather than at runtime
(i.e., if the user fails to pass one of the valid options, the compiler can issue
the error).

1.2.4 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists
of two consecutive memory locations of the underlying data type (i.e., float
or double), where the �rst location contains the real component, and the
second contains the imaginary part of the number.

In practice, programmers' methods of handling complex types in C vary.
Some use various data structures (some examples are discussed below).
Others accept complex numbers as arrays of the underlying type.

Complex numbers are accepted as void pointers so that widespread type
casting will not be required to avoid warning or errors during compilation
of complex code.

An ANSI/ISO committee is presently working on an extension to ANSI/ISO
C which de�nes complex data types. The de�nition of a complex element
is the same as given above, and so the handling of complex types by this
interface will not need to be changed when ANSI/ISO C standard is ex-
tended.

Considered methods

Probably the most strongly advocated alternative was de�ning complex
numbers via a structure such as
struct CBLAS COMPLEX ffloat r; float i;g; The main problem with
this solution is the lack of portability. By the ANSI/ISO C standard, ele-
ments in a structure are not guaranteed to be contiguous. With the above
structure, padding between elements has been experimentally observed (on
the CRAY T3D), so this problem is not purely theoretical.

4 CHAPTER 1. LEGACYBLAS

To get around padding problems within the structure, a structure such
as
struct CBLAS COMPLEX ffloat v[2];g; has been suggested. With this
structure there will obviously be no padding between the real and imagi-
nary parts. However, there still exists the possibility of padding between
elements within an array. More importantly, this structure does not lend
itself nearly as well as the �rst to code clarity.

A �nal proposal is to de�ne a structure which may be addressed the
same as the one above (i.e., ptr->r, ptr->i), but whose actual de�nition
is platform dependent. Then, hopefully, various vendors will either use the
above structure and ensure via their compilers its contiguousness, or they
will create a di�erent structure which can be accessed in the same way.

This requires vendors to support something which is not in the ANSI C
standard, and so there is no way to ensure this would take place. More to
the point, use of such a structure turns out to not o�er much in the way of
real advantage, as discussed in the following section.

All of these approaches require the programmer to either use the speci-
�ed data type throughout the code which will call the BLAS, or to perform
type casting on each BLAS call. When complex numbers are accepted
as void pointers, no type casting or data type is dictated, with the only
restriction being that a complex number have the de�nition given above.

1.2.5 Return values of complex functions

BLAS routines which return complex values in Fortran77 are instead recast
as subroutines in the C interface, with the return value being an output
parameter added to the end of the argument list. This allows the output
parameter to be accepted as void pointers, as discussed above.

Further, the name is suÆxed by sub. There are two main reasons for
this name change. First, the change from a function to a subroutine is
a signi�cant change, and thus the name should re
ect this. More impor-
tantly, the \traditional" name space is speci�cally reserved for use when the
forthcoming ANSI/ISO C extension is �nalized. When this is done, this
C interface will be extended to include functions using the \traditional"
names which utilize the new ANSI/ISO complex type to return the values.

Considered methods

This is the area where use of a structure is most desired. Again, the most
common suggestion is a structure such as struct CBLAS_COMPLEX {float r; float i;};.

If one is willing to use this structure throughout one's code, then this
provides a natural and convenient mechanism. If, however, the programmer

1.2. C INTERFACE TO LEGACY BLAS 5

has utilized a di�erent structure for complex, this ease of use breaks down.
Then, something like the following code fragment is required:

CBLAS_COMPLEX ctmp;

float cdot[2];

ctmp = cblas_cdotc(n, x, 1, y, 1);

cdot[0] = ctmp.r;

cdot[1] = ctmp.i;

which is certainly much less convenient than: cblas_cdotc_sub(n, x, 1, y, 1, cdot).
It should also be noted that the primary reason for having a function

instead of a subroutine is already invalidated by C's lack of a standard
complex type. Functions are most useful when the result may be used
directly as part of an in-line computation. However, since ANSI/ISO C
lacks support for complex arithmetic primitives or operator overloading,
complex functions cannot be standardly used in this way. Since the function
cannot be used as a part of a larger expression, nothing is lost by recasting
it as a subroutine; indeed a slight performance win may be obtained.

1.2.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted
as pointers, not as arrays of pointers. This means that the C de�nition
of a two dimensional array may not be used directly, since each row is an
arbitrary pointer (i.e., the address of the second row cannot be obtained
from the address of the �rst row). Note that if the user somehow ensures
the C array is actually contiguous (eg. by allocating it himself), C two
dimensional arrays can indeed be used.

All BLAS routines which take one or more two dimensional arrays as
arguments receive precisely one extra parameter as their �rst argument.
This argument is of the enumerated type
enum CBLAS ORDER fCblasRowMajor=101, CblasColMajor=102g;.
If this parameter is set to CblasRowMajor, it is assumed that elements
within a row of the array(s) are contiguous in memory, while elements
within array columns are separated by a constant stride given in the stride
parameter (this parameter corresponds to the leading dimension [e.g. LDA]
in the Fortran77 interface).

If the order is given as CblasColMajor, elements within array columns
are assumed to be contiguous, with elements within array rows separated
by stride memory elements.

Note that there is only one CBLAS ORDER parameter to a given routine:
all array operands are required to use the same ordering.

6 CHAPTER 1. LEGACYBLAS

This solution comes after much discussion. It was discovered that C
users in general seemed to split into two camps. Those people who have
a history of mixing C and Fortran77 (in particular making use of the For-
tran77 BLAS from C), tend to use column-major arrays in order to allow
ease of inter-language operations. Because of the
exibility of pointers,
this is not appreciably harder than using row-major arrays, even though C
\natively" possesses row-major arrays.

The second camp of C user might be described as the C purists. These
users are not interested in overt C/Fortran77 interoperability, and wish
to have arrays which are row-major, in accordance with standard C con-
ventions. The idea that they must recast their row-oriented algorithms to
column-major algorithms is unacceptable; many in this camp would prob-
ably not utilize any BLAS which enforced a column-major constraint.

Because both camps are fairly widely represented within the target au-
dience, it is impossible to choose one solution to the exclusion of the other.

Column-major array storage can obviously be supported directly on
top of the legacy Fortran77 BLAS. Recent discussion, particularly code
provided by D.P. Manley of DEC, has shown that row-major array storage
may also be supported in this way with little cost. Appendix 1.4 discusses
this issue in detail. To preview it here, we can say the level 1 and 3 BLAS
require no extra operations or storage to support row-major operations on
top of the legacy BLAS. Level 2 real routines also require no extra oper-
ations or storage. Some complex level 2 routines involving the conjugate
transpose will require extra storage and operations in order to form explicit
conjugates. However, this will always involve vectors, not the matrix. In
the worst case, we will need 2n extra storage, and 3n extra operations.

Considered methods

One proposal was to accept arrays as arrays of pointers, instead of as a
single pointer. This would correspond exactly to the standard ANSI/ISO
C two dimensional array. The problems with this approach are manifold.
First, the existing Fortran77 BLAS could not be used, since they demand
contiguous (though strided) storage.

Beyond this, many of the vectors used in level 1 and level 2 BLAS
come from rows or columns of two dimensional arrays. Elements within
columns of row-major arrays are not uniformly strided, which means that
a n-element column vector would need n pointers to represent it. This then
leads to vectors being accepted as arrays of pointers as well.

Now, assuming both our one and two dimensional arrays are accepted as
arrays of pointers, we have a problem when we wish to perform sub-array
access. If we wish to pass m � n subsection of a two dimensional array

1.2. C INTERFACE TO LEGACY BLAS 7

starting at row i and column j, we must allocate n pointers, and assign
them in a section of code such as:

float **A, **subA;

subA = malloc(m*sizeof(float*));

for (k=0; k != m; k++) subA[k] = A[i+k] + j;

cblas_rout(... subA ...);

The same operation must be done if we wish to use a row or column
as a vector. This is not only an inconvenience, but can add up to a non-
negligible performance loss as well.

A �x for these problems is that one and two dimensional arrays be passed
as arrays of pointers, and then indices are passed in to indicate the sub-
portion to access. Thus you have a call that looks like: cblas_rout(... A, i, j, ...);.
This solution still requires some additional tweaks to allow using two di-
mensional array rows and columns as vectors. Further, it is still not possi-
ble to support this interface on top of the Fortran77 BLAS. Finally, users
presently using contiguous storage arrays will have to malloc the array of
pointers as shown above.

With the adopted solution, the array is passed as a single pointer, which,
assuming the array has been contiguously allocated, can be easily obtained
by: cblas_rout(... &A[i][j] ...);.

1.2.7 C interface include �le

The C interface to the BLAS will have a standard include �le, called
cblas.h, which minimally contains the de�nition of the CBLAS types and
ANSI/ISO C prototypes for all BLAS routines. The standard cpp strat-
egy should be employed to ensure this �le can be included multiple times
without error. Section 1.3 shows a minimal cblas.h.

1.2.8 Error checking

The reference Fortran77 BLAS implementation contains error checking.
The C interface is required to supply corresponding error checking. If the
Fortran77 code is used to implement the C interface, most of the error check-
ing may be done by Fortran77 code, assuming error reporting is changed
to re
ect the di�ering C interface.

8 CHAPTER 1. LEGACYBLAS

1.2.9 Rules for obtaining the C interface from the For-

tran77

� The Fortran77 routine name is changed to lower case, and pre�xed
by cblas .

� All routines which accept two dimensional arrays (i.e., level 2 and 3),
acquire a new parameter as their �rst argument, which determines if
the two dimensional arrays are row or column major.

� Character arguments are replaced by the appropriate enumerated
type.

� Input arguments are declared with the const modi�er.

� Non-complex scalar input arguments are passed by value. This allows
the user to put in constants when desired (eg., passing 10 on the
command line for N).

� Complex scalar input arguments are passed as void pointers, since
they do not exist as a prede�ned data type in ANSI/ISO C.

� Array arguments are passed by address

� Output scalar arguments are passed by address.

� complex functions become subroutines which return the result via a
void pointer, added as the last parameter. The name is suÆxed with
sub.

1.3 cblas.h include �le

#ifndef CBLAS_H

#define CBLAS_H

#include <stddef.h>

/*

* Enumerated and derived types

*/

#define CBLAS_INDEX size_t /* this may vary between platforms */

enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};

enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

1.3. CBLAS.H INCLUDE FILE 9

enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

/*

* ===

* Prototypes for level 1 BLAS functions (complex are recast as routines)

* ===

*/

float cblas_sdsdot(const int N, const float alpha, const float *X,

const int incX, const float *Y, const int incY);

double cblas_dsdot(const int N, const float *X, const int incX, const float *Y,

const int incY);

float cblas_sdot(const int N, const float *X, const int incX,

const float *Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX,

const double *Y, const int incY);

/*

* Functions having prefixes Z and C only

*/

void cblas_cdotu_sub(const int N, const void *X, const int incX,

const void *Y, const int incY, void *dotu);

void cblas_cdotc_sub(const int N, const void *X, const int incX,

const void *Y, const int incY, void *dotc);

void cblas_zdotu_sub(const int N, const void *X, const int incX,

const void *Y, const int incY, void *dotu);

void cblas_zdotc_sub(const int N, const void *X, const int incX,

const void *Y, const int incY, void *dotc);

/*

* Functions having prefixes S D SC DZ

*/

float cblas_snrm2(const int N, const float *X, const int incX);

float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int incX);

double cblas_dasum(const int N, const double *X, const int incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

float cblas_scasum(const int N, const void *X, const int incX);

10 CHAPTER 1. LEGACYBLAS

double cblas_dznrm2(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int incX);

/*

* Functions having standard 4 prefixes (S D C Z)

*/

CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

/*

* ===

* Prototypes for level 1 BLAS routines

* ===

*/

/*

* Routines with standard 4 prefixes (s, d, c, z)

*/

void cblas_sswap(const int N, float *X, const int incX,

float *Y, const int incY);

void cblas_scopy(const int N, const float *X, const int incX,

float *Y, const int incY);

void cblas_saxpy(const int N, const float alpha, const float *X,

const int incX, float *Y, const int incY);

void cblas_dswap(const int N, double *X, const int incX,

double *Y, const int incY);

void cblas_dcopy(const int N, const double *X, const int incX,

double *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double *X,

const int incX, double *Y, const int incY);

void cblas_cswap(const int N, void *X, const int incX,

void *Y, const int incY);

void cblas_ccopy(const int N, const void *X, const int incX,

void *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X,

const int incX, void *Y, const int incY);

1.3. CBLAS.H INCLUDE FILE 11

void cblas_zswap(const int N, void *X, const int incX,

void *Y, const int incY);

void cblas_zcopy(const int N, const void *X, const int incX,

void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X,

const int incX, void *Y, const int incY);

/*

* Routines with S and D prefix only

*/

void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P);

void cblas_srot(const int N, float *X, const int incX,

float *Y, const int incY, const float c, const float s);

void cblas_srotm(const int N, float *X, const int incX,

float *Y, const int incY, const float *P);

void cblas_drotg(double *a, double *b, double *c, double *s);

void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double *P);

void cblas_drot(const int N, double *X, const int incX,

double *Y, const int incY, const double c, const double s);

void cblas_drotm(const int N, double *X, const int incX,

double *Y, const int incY, const double *P);

/*

* Routines with S D C Z CS and ZD prefixes

*/

void cblas_sscal(const int N, const float alpha, float *X, const int incX);

void cblas_dscal(const int N, const double alpha, double *X, const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const int incX);

void cblas_csscal(const int N, const float alpha, void *X, const int incX);

void cblas_zdscal(const int N, const double alpha, void *X, const int incX);

/*

* ===

* Prototypes for level 2 BLAS

* ===

*/

12 CHAPTER 1. LEGACYBLAS

/*

* Routines with standard 4 prefixes (S, D, C, Z)

*/

void cblas_sgemv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const float alpha, const float *A, const int lda,

const float *X, const int incX, const float beta,

float *Y, const int incY);

void cblas_sgbmv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const int KL, const int KU, const float alpha,

const float *A, const int lda, const float *X,

const int incX, const float beta, float *Y, const int incY);

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const float *A, const int lda,

float *X, const int incX);

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const float *A, const int lda,

float *X, const int incX);

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const float *Ap, float *X, const int incX);

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const float *A, const int lda, float *X,

const int incX);

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const float *A, const int lda,

float *X, const int incX);

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const float *Ap, float *X, const int incX);

void cblas_dgemv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const double alpha, const double *A, const int lda,

const double *X, const int incX, const double beta,

double *Y, const int incY);

void cblas_dgbmv(const enum CBLAS_ORDER order,

1.3. CBLAS.H INCLUDE FILE 13

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const int KL, const int KU, const double alpha,

const double *A, const int lda, const double *X,

const int incX, const double beta, double *Y, const int incY);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const double *A, const int lda,

double *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const double *A, const int lda,

double *X, const int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const double *Ap, double *X, const int incX);

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const double *A, const int lda, double *X,

const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const double *A, const int lda,

double *X, const int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const double *Ap, double *X, const int incX);

void cblas_cgemv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *X, const int incX, const void *beta,

void *Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const int KL, const int KU, const void *alpha,

const void *A, const int lda, const void *X,

const int incX, const void *beta, void *Y, const int incY);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *A, const int lda,

void *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

14 CHAPTER 1. LEGACYBLAS

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const void *A, const int lda,

void *X, const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *Ap, void *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *A, const int lda, void *X,

const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const void *A, const int lda,

void *X, const int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *Ap, void *X, const int incX);

void cblas_zgemv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *X, const int incX, const void *beta,

void *Y, const int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order,

const enum CBLAS_TRANSPOSE TransA, const int M, const int N,

const int KL, const int KU, const void *alpha,

const void *A, const int lda, const void *X,

const int incX, const void *beta, void *Y, const int incY);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *A, const int lda,

void *X, const int incX);

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const void *A, const int lda,

void *X, const int incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *Ap, void *X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *A, const int lda, void *X,

1.3. CBLAS.H INCLUDE FILE 15

const int incX);

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const int K, const void *A, const int lda,

void *X, const int incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag,

const int N, const void *Ap, void *X, const int incX);

/*

* Routines with S and D prefixes only

*/

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *A,

const int lda, const float *X, const int incX,

const float beta, float *Y, const int incY);

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const int K, const float alpha, const float *A,

const int lda, const float *X, const int incX,

const float beta, float *Y, const int incY);

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *Ap,

const float *X, const int incX,

const float beta, float *Y, const int incY);

void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N,

const float alpha, const float *X, const int incX,

const float *Y, const int incY, float *A, const int lda);

void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *X,

const int incX, float *A, const int lda);

void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *X,

const int incX, float *Ap);

void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *X,

const int incX, const float *Y, const int incY, float *A,

const int lda);

void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const float *X,

const int incX, const float *Y, const int incY, float *A);

16 CHAPTER 1. LEGACYBLAS

void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *A,

const int lda, const double *X, const int incX,

const double beta, double *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const int K, const double alpha, const double *A,

const int lda, const double *X, const int incX,

const double beta, double *Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *Ap,

const double *X, const int incX,

const double beta, double *Y, const int incY);

void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N,

const double alpha, const double *X, const int incX,

const double *Y, const int incY, double *A, const int lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *X,

const int incX, double *A, const int lda);

void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *X,

const int incX, double *Ap);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *X,

const int incX, const double *Y, const int incY, double *A,

const int lda);

void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const double *X,

const int incX, const double *Y, const int incY, double *A);

/*

* Routines with C and Z prefixes only

*/

void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const void *alpha, const void *A,

const int lda, const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const int K, const void *alpha, const void *A,

const int lda, const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

1.3. CBLAS.H INCLUDE FILE 17

const int N, const void *alpha, const void *Ap,

const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float alpha, const void *X, const int incX,

void *A, const int lda);

void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const float *alpha, const void *X,

const int incX, void *A);

void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *Ap);

void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const void *alpha, const void *A,

const int lda, const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const int K, const void *alpha, const void *A,

const int lda, const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const void *alpha, const void *Ap,

const void *X, const int incX,

const void *beta, void *Y, const int incY);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N,

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double alpha, const void *X, const int incX,

18 CHAPTER 1. LEGACYBLAS

void *A, const int lda);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo,

const int N, const double *alpha, const void *X,

const int incX, void *A);

void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const in

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *A, const int lda);

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const in

const void *alpha, const void *X, const int incX,

const void *Y, const int incY, void *Ap);

/*

* ===

* Prototypes for level 3 BLAS

* ===

*/

/*

* Routines with standard 4 prefixes (S, D, C, Z)

*/

void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_TRANSPOSE TransB, const int M, const int N,

const int K, const float alpha, const float *A,

const int lda, const float *B, const int ldb,

const float beta, float *C, const int ldc);

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const float alpha, const float *A, const int lda,

const float *B, const int ldb, const float beta,

float *C, const int ldc);

void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const float alpha, const float *A, const int lda,

const float beta, float *C, const int ldc);

void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const float alpha, const float *A, const int lda,

const float *B, const int ldb, const float beta,

float *C, const int ldc);

void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

1.3. CBLAS.H INCLUDE FILE 19

const float alpha, const float *A, const int lda,

float *B, const int ldb);

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const float alpha, const float *A, const int lda,

float *B, const int ldb);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_TRANSPOSE TransB, const int M, const int N,

const int K, const double alpha, const double *A,

const int lda, const double *B, const int ldb,

const double beta, double *C, const int ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const double alpha, const double *A, const int lda,

const double *B, const int ldb, const double beta,

double *C, const int ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const double alpha, const double *A, const int lda,

const double beta, double *C, const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const double alpha, const double *A, const int lda,

const double *B, const int ldb, const double beta,

double *C, const int ldc);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const double alpha, const double *A, const int lda,

double *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const double alpha, const double *A, const int lda,

double *B, const int ldb);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_TRANSPOSE TransB, const int M, const int N,

const int K, const void *alpha, const void *A,

const int lda, const void *B, const int ldb,

20 CHAPTER 1. LEGACYBLAS

const void *beta, void *C, const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const void *alpha, const void *A, const int lda,

const void *beta, void *C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const void *alpha, const void *A, const int lda,

void *B, const int ldb);

void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const void *alpha, const void *A, const int lda,

void *B, const int ldb);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_TRANSPOSE TransB, const int M, const int N,

const int K, const void *alpha, const void *A,

const int lda, const void *B, const int ldb,

const void *beta, void *C, const int ldc);

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const void *alpha, const void *A, const int lda,

const void *beta, void *C, const int ldc);

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

1.3. CBLAS.H INCLUDE FILE 21

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const void *alpha, const void *A, const int lda,

void *B, const int ldb);

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,

const enum CBLAS_DIAG Diag, const int M, const int N,

const void *alpha, const void *A, const int lda,

void *B, const int ldb);

/*

* Routines with prefixes C and Z only

*/

void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const float alpha, const void *A, const int lda,

const float beta, void *C, const int ldc);

void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const float beta,

void *C, const int ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,

const enum CBLAS_UPLO Uplo, const int M, const int N,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const void *beta,

void *C, const int ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const double alpha, const void *A, const int lda,

const double beta, void *C, const int ldc);

22 CHAPTER 1. LEGACYBLAS

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo,

const enum CBLAS_TRANSPOSE Trans, const int N, const int K,

const void *alpha, const void *A, const int lda,

const void *B, const int ldb, const double beta,

void *C, const int ldc);

#endif

1.4 Using Fortran77 BLAS to support row-

major BLAS operations

This section is not part of the standard per se. Rather, it exists as an
advice to the implementor on how row-major BLAS operations may be
implemented using column-major BLAS. This allows vendors to leverage
years of Fortran77 BLAS developement in producing the C BLAS.

Before this issue is examined in detail, a few general observations on
array storage are helpful. We must distinguish between the matrix and
the array which is used to store the matrix. The matrix, and its rows and
columns, have mathematical meaning. The array is simply the method
of storing the matrix, and its rows and columns are signi�cant only for
memory addressing.

Thus we see we can store the columns of a matrix in the rows of an
array, for instance. When this occurs in the BLAS, the matrix is said to be
stored in transposed form.

A row-major array stores elements along a row in contiguous storage,
and separates the column elements by some constant stride (often the ac-
tual length of a row). Column-major arrays have contiguous columns, and
strided rows. The importance of this is to note that a row-major array
storing a matrix in the natural way, is a transposed column-major array
(i.e., it can be thought of as a column-major array where the rows of the
matrix are stored in the columns of the array).

Similarly, an upper triangular row-major array corresponds to a trans-
posed lower triangular column-major array (the same is true in reverse [i.e.,
lower-to-upper], obviously). To see this, simply think of what a upper tri-
angular matrix stored in a row-major array looks like. The �rst n entries
contain the �rst matrix row, followed by a non-negative gap, followed by
the second matrix row.

If this same array is viewed as column-major, the �rst n entries are a
column, instead of a row, so that the columns of the array store the rows
of the matrix (i.e., it is transposed). This means that if we wish to use the

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS23

Fortran77 (column-major) BLAS with triangular matrices coming from C
(possibly row-major), we will be reversing the setting of UPLO, while simul-
taneously reversing the setting of TRANS (this gets slightly more complicated
when the conjugate transpose is involved, as we will see).

Finally, note that if a matrix is symmetric or hermitian, its rows are
the same as its columns, so we may merely switch UPLO, without bothering
with TRANS.

In the BLAS, there are two separate cases of importance. one dimen-
sional arrays (storage for vectors) have the same meaning in both C and
Fortran77, so if we are solving a linear algebra problem who's answer is a
vector, we will need to solve the same problem for both languages. However,
if the answer is a matrix, in terms of calling routines which use column-
major storage from one using row-major storage, we will want to solve the
transpose of the problem.

To get an idea of what this means, consider a contrived example. Say
we have routines for simple matrix-matrix and matrix-vector multiply. The
vector operation is y A � x, and the matrix operation is C A �
B. Now say we are implementing these as calls from row-major array
storage to column-major storage. Since the matrix-vector multiply's answer
is a vector, the problem we are solving is remains the same, but we must
remember that our C array A is a Fortran77 AT . On the other hand, the
matrix-matrix multiply has a matrix for a result, so when the di�ering
array storage is taken into account, the problem we want to solve is CT
BT �AT .

This last example demonstrates another general result. Some level 3
BLAS contain a SIDE parameter, determining which side a matrix is ap-
plied on. In general, if we solving the transpose of this operation, the side
parameter will be reversed.

With these general principles, it is possible to show that all that row-
major level 3 BLAS can be expressed in terms of column-major BLAS
without any extra array storage or extra operations. In the level 2 BLAS,
no extra storage or array accesses are required for the real routines. Com-
plex routines involving the conjugate transpose, however, may require a
n-element temporary, and up to 3n more operations (vendors may avoid
all extra workspace and operations by overloading the TRANS option for the
level 2 BLAS: letting it also allow conjugation without doing the transpose).
The level 1 BLAS, which deal exclusively with vectors, are una�ected by
this storage issue.

With these ideas in mind, we will now show how to support a row-
major BLAS on top of a column major BLAS. This information will be
presented in tabular form. For brevity, row-major storage will be referred
to as coming from C (even though column-major arrays can also come from

24 CHAPTER 1. LEGACYBLAS

C), while column-major storage will be referred to as F77.

Each table will show a BLAS invocation coming from C, the operation
that the BLAS should perform, the operation required once F77 storage is
taken into account (if this changes), and the call to the appropriate F77
BLAS. Not every possible combination of parameters is shown, since many
are simply re
ections of another (i.e., when we are applying the Upper,

NoTranspose becomes Lower, Transpose rule, we will show it for only the
upper case. In order to make the notation more concise, let us de�ne xc to
be conj(x).

1.4.1 Level 2 BLAS

GEMV

C call cblas cgemv(CblasNoTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y �Ax+ �y

F77 call CGEMV('T', n, m, �, A, lda, x, incx, �, y, incy)

C call cblas cgemv(CblasTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y �ATx+ �y

F77 call CGEMV('N', n, m, �, A, lda, x, incx, �, y, incy)

C call cblas cgemv(CblasConjTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y �AHx+ �y) (yc �cATxc + �cyc)c

F77 call CGEMV('N', n, m, �, A, lda, xc, 1, �, y, incy)

Note that we switch the value of transpose to handle the row/column
major ordering di�erence. In the last case, we will require n elements of
workspace so that we may form xc = xc. Then, we set y = yc, and make
the call. This gives us the conjugate of the answer, so we once again set
y = yc. Therefore, we see that to support the conjugate transpose, we will
need to allocate an n-element vector, and perform 2m+n extra operations.

HEMV/SYMV

HEMV and SYMV are handled the same. Neither requires extra workspace or
operations.

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS25

C call cblas chemv(CblasUpper, n, �, A, lda, x, incx, �, y, incy)

op y �Ax + �y

F77 call CHEMV('L', n, �, A, lda, x, incx, �, y, incy)

C call cblas chemv(Lower, n, �, A, lda, x, incx, �, y, incy)

op y �Ax + �y

F77 call CHEMV('U', n, �, A, lda, x, incx, �, y, incy)

TRMV/TRSV

C call cblas ctrmv(CblasUpper, CblasNoTrans, diag, n, �, A, lda, x, incx)

op x �Ax

F77 call CTRMV('L', 'T', diag, n, �, A, lda, x, incx)

C call cblas ctrmv(CblasUpper, CblasTrans, diag, n, �, A, lda, x, incx)

op x �ATx

F77 call CTRMV('L', 'N', diag, n, �, A, lda, x, incx)

C call cblas ctrmv(CblasUpper, CblasConjTrans, diag, n, �, A, lda, x, incx)

op x �AHx) (xc = �cATxc)c

F77 call CTRMV('L', 'N', diag, n, �, A, lda, xc, incx)

Again, we see that we will need some extra operations when we are
handling the conjugate transpose. We need a temporary scalar to hold
alphac, and then we conjugate x before the call, giving us the conjugate
of the answer we seek. We then conjugate this again to return the correct
answer. This routine therefore needs 2n extra operations for the complex
conjugate case.

The calls with the C array being Lower are merely the re
ection of these
calls, and thus are not shown. The analysis for TRMV is the same, since
it involves the same principle of what a transpose of a triangular matrix is.

GER/GERU

This is our �rst routine that has a matrix as the solution. Recalling that
this means we solve the transpose of the original problem, we get:
C call cblas cgeru(m, n, �, x, incx, y, incy, A, lda)

C op A �xyT +A

F77 op AT �yxT +AT

F77 call CGERU(n, m, �, y, incy, x, incx, A, lda)

No extra storage or operations are required.

26 CHAPTER 1. LEGACYBLAS

GERC

C call cblas cgerc(m, n, �, x, incx, y, incy, A, lda)

C op A �xyH +A

F77 op AT �(xyH)T +AT = �ycxT +AT

F77 call CGERU(n, m, �, y, incy, x, incx, A, lda)

Note that we need to allocate n-element workspace to hold the conju-
gated y, and we call GERU, not GERC.

HER

C call cblas cher(CblasUpper, n, �, x, incx, A, lda)

C op A �xxH +A

F77 op AT �xcxT +AT

F77 call CHER('L', n, �, xc, 1, A, lda)

Again, we have an n-element workspace and n extra operations.

HER2

C call cblas cher2(CblasUpper, n, �, x, incx, y, incy, A, lda)

C op A �xyH + y(�x)H +A

F77 op AT �ycxT + �cxcyT +AT = �yc(xc)H + xc(�yc)H +AT

F77 call CHER2('L', n, �, yc, 1, xc, 1, A, lda)

So we need 2n extra workspace and operations to form the conjugates
of x and y.

SYR

C call cblas ssyr(CblasUpper, n, �, x, incx, A, lda)

C op A �xxT +A

F77 op AT �xxT +AT

F77 call SSYR('L', n, �, x, incx, A, lda)

No extra storage or operations required.

SYR2

C call cblas ssyr2(CblasUpper, n, �, x, incx, y, incy, A, lda)

C op A �xyT + �yxT +A

F77 op AT �yxT + �xyT +AT

F77 call SSYR2('L', n, �, y, incy, x, incx, A, lda)

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS27

No extra storage or operations required.

28 CHAPTER 1. LEGACYBLAS

1.4.2 Level 3 BLAS

GEMM

C call cblas cgemm(CblasNoTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �AB + �C

F77 op CT �BTAT + �CT

F77 call CGEMM('N', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasNoTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ABT + �C

F77 op CT �BAT + �CT

F77 call CGEMM('T', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasNoTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ABH + �C

F77 op CT �BcAT + �CT

F77 call CGEMM('C', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ATB + �C

F77 op CT �BTA+ �CT

F77 call CGEMM('N', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ATBT + �C

F77 op CT �BA+ �CT

F77 call CGEMM('T', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ATBH + �C

F77 op CT �BcA+ �CT

F77 call CGEMM('C', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasConjTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �AHB + �C

F77 op CT �BTAc + �CT

F77 call CGEMM('N', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasConjTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �AHBT + �C

F77 op CT �BAc + �CT

F77 call CGEMM('T', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasConjTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc

C op C �AHBH + �C

F77 op CT �BcAc + �CT

F77 call CGEMM('C', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS29

SYMM/HEMM

C call cblas chemm(CblasLeft, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ldc)

C op C �AB + �C

F77 op CT �BTAT + �CT

F77 call CHEMM('R', 'L', n, m, �, A, lda, B, ldb, �, C, ldc)

C call cblas chemm(Right, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ldc)

C op C �BA + �C

F77 op CT �ATBT + �CT

F77 call CHEMM('L', 'L', n, m, �, A, lda, B, ldb, �, C, ldc)

SYRK

C call cblas csyrk(CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ldc)

C op C �AAT + �C

F77 op CT �AAT + �CT

F77 call CSYRK('L', 'T', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas csyrk(CblasUpper, CblasTrans, n, k, �, A, lda, �, C, ldc)

C op C �ATA+ �C

F77 op CT �ATA+ �CT

F77 call CSYRK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

In reading the above descriptions, it is important to remember a few
things. First, the symmetric matrix is C, and thus we change UPLO to
accommodate the di�ering storage of C. TRANSPOSE is then varied to handle
the storage e�ects on A.

30 CHAPTER 1. LEGACYBLAS

HERK

C call cblas cherk(CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ldc)

C op C �AAH + �C

F77 op CT �AcAT + �CT

F77 call CHERK('L', 'C', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas cherk(CblasUpper, CblasConjTrans, n, k, �, A, lda, �, C, ldc)

C op C �AHA+ �C

F77 op CT �ATAc + �CT

F77 call CHERK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

SYR2K

C call cblas csyr2k(CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ldc

C op C �ABT + �BAT + �C

F77 op CT �BAT + �ABT + �CT = �ABT + �BAT + �CT

F77 call CSYR2K('L', 'T', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas csyr2k(CblasUpper, CblasTrans, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C �ATB + �BTA+ �C

F77 op CT �BTA+ �ATB + �CT = �ATB + �BTA+ �CT

F77 call CSYR2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

Note that we once again wind up with an operation that looks the
same from C and Fortran77, saving that the C operations wishes to form
CT , instead of C. So once again we
ip the setting of UPLO to handle the
di�erence in the storage of C. We then
ip the setting of TRANS to handle
the storage e�ects for A and B.

HER2K

C call cblas cher2k(CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ldc

C op C �ABH + �cBAH + �C

F77 op CT �BcAT + �cAcBT + �CT = �cAcBT + �BcAT + �CT

F77 call CHER2K('L', 'C', n, k, �c, A, lda, B, ldb, �, C, ldc)

C call cblas cher2k(CblasUpper, CblasConjTrans, n, k, �, A, lda, B, ldb, �, C, l

C op C �AHB + �cBHA+ �C

F77 op CT �BTAc + �cATBc + �CT = �cATBc + �BTAc + �CT

F77 call CHER2K('L', 'N', n, k, �c, A, lda, B, ldb, �, C, ldc)

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS31

TRMM/TRSM

Because of their identical use of the SIDE, UPLO, and TRANSA parameters,
TRMM and TRSM share the same general analysis. Remember that A is
a triangular matrix, and thus when we handle its storage by
ipping UPLO,
we implicitly change its TRANS setting as well. With this in mind, we have:

C call cblas ctrmm(CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, �, A, lda, B, ldb)

C op B �AB

F77 op BT
 �BTAT

F77 call CTRMM('R', 'L', 'N', diag, n, m, �, A, lda, B, ldb)

C call cblas ctrmm(CblasLeft, CblasUpper, CblasTrans, diag, m, n, �, A, lda, B, ldb)

C op B �ATB

F77 op BT
 �BTA

F77 call CTRMM('R', 'L', 'T', diag, n, m, �, A, lda, B, ldb)

C call cblas ctrmm(CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, �, A, lda, B, ldb)

C op B �AHB

F77 op BT
 �BTAc

F77 call CTRMM('R', 'L', 'C', diag, n, m, �, A, lda, B, ldb)

1.4.3 Banded routines

The above tricks can be used for the banded routines only if a C (row-major)
banded array has some sort of meaning when expanded as a Fortran banded
array. It turns out that when this is done, you get the transpose of the C
array, just as in the dense case.

In Fortran77, the banded array is an array whose rows correspond to the
diagonals of the matrix, and whose columns contain the selected portion
of the matrix column. To rephrase this, the diagonals of the matrix are
stored in strided storage, and the relevant pieces of the columns of the
matrix are stored in contiguous memory. This makes sense: in a column-
based algorithm, you will want your columns to be contiguous for eÆciency
reasons.

In order to ensure our columns are contiguous, we will structure the
banded array as shown below. Notice that the �rst KU rows of the array
store the superdiagonals, appropriately spaced to line up correctly in the
column direction with the main diagonal. The last KL rows contain the

32 CHAPTER 1. LEGACYBLAS

subdiagonals.

------ Super diagonal KU

----------- Super diagonal 2

------------ Super diagonal 1

------------- main diagonal (D)

------------ Sub diagonal 1

----------- Sub diagonal 2

------ Sub diagonal KL

If we have a row-major storage, and thus a row-oriented algorithm, we
will similarly want our rows to be contiguous in order to ensure eÆciency.
The storage scheme that is thus dictated is shown below. Notice that the
�rst KL columns store the subdiagonals, appropriately padded to line up
with the main diagonal along rows.

KL D KU

| | | |

| | | | |

| | | | | |

| | | | | |

| | | | |

| | | |

Now, let us contrast these two storage schemes. Both store the diago-
nals of the matrix along the non-contiguous dimension of the matrix. The
column-major banded array stores the matrix columns along the contigu-
ous dimension, whereas the row-major banded array stores the matrix rows
along the contiguous storage.

This gives us our �rst hint as to what to do: rows stored where columns
should be, indicated, in the dense routines, that we needed to set a trans-
pose parameter. We will see that we can do this for the banded routines as
well.

We can further note that in the column-major banded array, the �rst
part of the non-contiguous dimension (i.e. the �rst rows) store superdiago-
nals, whereas the �rst part of the non-contiguous dimension of row-major
arrays (i.e., the �rst columns) store the subdiagonals.

We now note that when you transpose a matrix, the superdiagonals
of the matrix become the subdiagonals of the matrix transpose (and vice
versa).

Along the contiguous dimension, we note that we skip KU elements
before coming to our �rst entry in a column-major banded array. The

1.4. USING FORTRAN77 BLAS TO SUPPORTROW-MAJOR BLAS OPERATIONS33

same happens in our row-major banded array, except that the skipping
factor is KL.

All this leads to the idea that when we have a row-major banded array,
we can consider it as a transpose of the Fortran77 column-major banded
array, where we will swap not only m and n, but also KU and KL. An
example should help demonstrate this principle. Let us say we have the

matrix A =

�
1 3 5 7
2 4 6 8

�

If we express this entire array in banded form (a fairly dumb thing to
do, but good for example purposes), we get KU = 3, KL = 1. In row-major

banded storage this becomes: Cb =

�
X 1 3 5 7
2 4 6 8 X

�

So, we believe this should be the transpose if interpreted as a Fortran77
banded array. The matrix transpose, and its Fortran77 banded storage is
shown below:

AT =

2
664

1 2
3 4
5 6
7 8

3
775) Fb =

2
66664

X 2
1 4
3 6
5 8
7 X

3
77775

Now we simply note that since Cb is row major, and Fb is column-major,
they are actually the same array in memory.

With the idea that row-major banded matrices produce the transpose
of the matrix when interpreted as column-major banded matrices, we can
use the same analysis for the banded BLAS as we used for the dense BLAS,
noting that we must also always swap KU and KL.

1.4.4 Packed routines

Packed routines are much simpler than banded. Here we have a triangular,
symmetric or hermitian matrix which is packed so that only the relevant
triangle is stored. Thus if we have an upper triangular matrix stored in
column-major packed storage, the �rst element holds the relevant portion
of the �rst column of the matrix, the next two elements hold the relevant
portion of the second column, etc.

With an upper triangular matrix stored in row-major packed storage,
the �rstN elements hold the �rst row of the matrix, the nextN�1 elements
hold the next row, etc.

Thus we see in the hermitian and symmetric cases, to get a row-major
packed array correctly interpreted by Fortran77, we will simply switch the
setting of UPLO. This will mean that the rows of the matrix will be read in
as the columns, but this is OK, as we have seen before. In the symmetric

34 CHAPTER 1. LEGACYBLAS

case, since A = AT the column and rows are the same, so there is obviously
no problem. In the hermitian case, we must be sure that the imaginary
component of the diagonal is not used, and it assumed to be zero. However,
the diagonal element in a row when our matrix is upper will correspond to
the diagonal element in a column when our matrix is called lower, so this
is handled as well.

In the triangular cases, we will need to change both UPLO and TRANS,
just as in the dense routines.

With these ideas in mind, the analysis for the dense routines may be
used unchanged for packed.

