Notes on Implementation of Serialization

ajd27
January 21, 2000

Our version of serialization should be able to use reflection but not depend
upon it. The suggestion in Bushmann’s Reflection pattern is to have the seri-
alizer query the variables in a class and save or retrieve them. This has been
our basic notion, but Markus insists that we not break encapsulation. There
are some variables which should be private. I am taking that reminder seriously
and wonder whether we can take advantage of the machinery of introspection
for private member variables.

The traditional model of serialization suggests you pass to a class a pointer
to an istream or ostream.

void Subject::Write(ostream& out) {
out << nAtoms;
out << timestep;

}

We are suggesting that all variables which should be saved in order to save an
objects state can also be public variables.

void Subject::Write(Writer& out) {
out.WriteIntrospectiveObject(this);

}

void Writer::WriteIntrospectiveObject(Introspective *const Subj) {
// For every variable in the class’s ClassData, get it and
// write it to disk.
for_each(Subj.VarBegin(), Subj.VarEnd(), WriteVar);

}

The second method requires that all variables you want to save be publicly
accessible. This may not be proper.

The DataFieldInfo object stores pointers to member functions which get and
set variables. Those member functions can be private, and C++ will enforce
the access rules as it should. We do not need to enforce them ourselves. On the
other hand, there is no point in showing a member variable in a user-interface
dialog box’s edit text field if it would be an error to try to set it.



What use would it be to store pointers to private set member functions in
ClassData if no one can set them? Maybe the introspective class, itself, could
use its ClassData to save and read its state.

Chris made a comment about using the Memento design from Gang of Four
which may help this issue. The Memento pattern suggests that a class can store
its internal state in an opaque container which outside clients can save and
store but not muck inside. Then the object can re-initialize from a Momento.
It seems like it might be useful here, but we aren’t as concerned with keeping
the outside world from accessing our variables as we are concerned with how
we can get access to our variables. That is, the DataFieldInfo objects which
contain pointers to member functions will enforce access rules if those functions
are private. How can one write code where Introspection helps a class internally
call its own private member functions?

Here 1s how that code might look. It uses dynamic casting to get to the
correct function pointers. The goal of this routine is to allow an object to call
its own private member function so the call will succeed.

ListOfAtoms: :read(istream &in) {
// Get a list of our private data fields from somewhere.
vector<DataField<int>* >& privateIntFields;
privateIntFields = this->GetPrivatelIntFields();
int iValue; // Read an int from the stream or file.
in >> iValue;
// Convert the DataField<int> to a DataFieldInfo<ListOfAtoms,int>
DataFieldInfo<ListOfAtoms,int>* LOAFieldInfo;
LOAFieldInfo = dynamic_cast<DataFieldInfo<ListOfAtoms,int>*>(

privateIntFields[0]);

// Get the pointer to our own member function and call it.
void (ListOfAtoms::#*pfSetInt)(int) = LOAFieldInfo.pfSetValue;
(this->*pfSetInt) (iValue);

}

We had to cast the DataField to a DataFieldInfo because it is the DataFieldInfo
which has member variable pointers to our private member functions. We would
put them in the DataField<int>, but it doesn’t know about ListOfAtoms.
Stored in a DataField with the wrong type, the function calls could not succeed.
Finally, this method ends by calling our own member function on our own
variable, which was the goal.

Let’s take a step back. We have been talking about using the same machinery
of introspection for public and private variables. What if we didn’t use all of it or
if we changed it, maybe only for the private variables. The code above is difficult
because it is difficult to get hold of the exact pointer to member function from
the DataFieldInfo. What if the ClassData class knew about the ListOfAtoms
(through templates)? Maybe a class can have a static ClassData<List0fAtoms>
member. This ClassData does not need to know about base classes because
it is responsible only for private data. Having a little member class which



manipulates data reminds me of a Momento. It could return the pointers to get
and set functions for ListOfAtoms itself.



