
MD Thread Guide

Drew Dolgert
http://www.tc.cornell.edu/Research

May 3, 2000

1 Introduction

This should help you get started with the MD thread classes. We will cover

• how to use the thread class;

• how the class structure enables us to make it cross-platform;

• comments on implementation of the thread class.

You will hopefully know enough from this to be able to write code which can
execute using this thread class.

By thread I mean a thread of execution. Every process has at least one
thread of execution when it starts its main. This class is meant to help you run
your simulation in a separate thread.

The “MD” thread classes are used in our molecular dynamics code. They
have an interface limited to the needs of running and controlling a numerical
simulation. The design goals are therefore ease of use and speed while running.

2 Use

Assume we start with two bodies of code. The gritty numerics of the simulation
are of primary interest and act as a server to some client set of code which
controls and displays that simulation’s data. Right now the Windows GUI is
the client and we call the simulation a Unix main().

2.1 Client Interface

The simulation thread class has two interfaces, one for the client and one for
the threaded server. Let’s first discuss the client because it is simple. Here is
the class inteface:

class Thread {
public:
int Start();

1



int Stop();
int Pause();
int Resume();
int Toggle(); // if paused, resume. if running, pause

};

Start() and Stop() create and destroy the thread. Pause() and Resume() block
the thread. If the underlying simulation cooperates (by implementing a Thread-
able interface), then the thread exits cleanly when it stops and pauses and
resumes at an acceptable checkpoint in the calculation.

The most important property to note about this thread class is that it is
synchronous. That is, when you tell the simulation to Start(), it will have
started by the time the method returns. If you ask it to Pause(), it will have
reached its checkpoint and paused before the method returns. This makes it
very clear how to deal with the thread.

There are issues with this implementation. For instance, the running graph-
ical interface should not wait on the thread to complete because it could lock up
for seconds. That would flaunt user-interface conventions. In addition, if we are
thinking about running the simulation on a distant machine and connecting to
it with the user interface, we would hardly want to freeze the window until we
hear a reply that the thread stopped. Were we to use an asynchronous thread,
we would not be tempted to rely on immediate responses from commands to
the thread.

For now we use the synchronous thread because we do, in fact, rely on
immediate responses from the simulation thread (in DoModal while changing
dialog information). Making an asynchronous thread is a simple and fun task
from here. Just try not to rely on immediate replies when you code your own
applications.

There is an additional part of the client interface used when creating the
thread.

class Thread {
public:
SetThread(Runnable *thread);
SetThread(Threadable *thread);

};

During initialization, one uses these commands to tell the thread class what
body of code it is to run. How does that work?

2.2 Server Interface

2.2.1 Runnable

The body of code that wants to be run inside a thread has to conform to an
interface. The simplest looks like a Java model.

class Runnable {

2



public:
int Run(void) = 0;

};

Inheriting from this abstract class is a guarantee that your simulation has a
Run() method. When a Thread class is initialized with a Runnable simulation,
it knows to start the thread and call its Run() method for the body of the
thread. The simulation could have other methods if it liked.

class MDThread {
public:
int Init();
int Run(void);
int Cleanup();

};

The only one that gets called during the execution of the thread is the Run()
method.

Just having a Run() method doesn’t do a lot for a threaded object because
it allows very limited interaction between the Thread class and the Runnable
class. It is easy to start a class by calling its Run() method, but how does
one stop, pause, or resume the thread? You could pause it with a system
signal which would freeze it mid-computation, but that is system-dependent and
hardly useful. You could stop it only by terminating the thread, a dangerous
prospect on Win32. The only way a Runnable class is useful is if you expect
it to run to completion every time without interference from a client. Then it
starts and ends cleanly.

2.2.2 Threadable

There is more functionality in the Threadable class. This class allows the sim-
ulation to take a breather when you ask it to. It is a cooperative multitasking
in the sense that the simulation promises to choose some times when it will call
a function where it is at a good point to stop in the code.

There are two functions in the Threadable class. The first is called by
the simulation in its Run() method, presumably every loop or every ten loops
through. The second allows the thread to register itself with the simulation as
the person to talk with when it comes time to pause.

class Threadable : public Runnable {
public:
bool IsRunning() {
if (this->pThread) return pThread->IsRunning();
else return true;

}
void SetThread(Thread *const thread) {
this->pThread = thread;

}

3



private:
Thread *pThread;

};

When the Thread gets hold of the Threadable simulation, it registers itself with
SetThread() so that the simulation can call back to the Thread’s IsRunning
routine.

Here’s the trick: it may take a long time to return from IsRunning() if the
client requested a pause. It is inside IsRunning() that the simulation learns we
want it to quit its inner loop.

We expect the MDThread, therefore, to have a Run() method like the fol-
lowing.

int MDThread::Run() {
while (this->IsRunning) {
do this stuff
do that stuff

}
return 0;

}

You can, of course, initialize in the run loop if you want, but anything initial-
ize on the stack of the run loop disappears when the thread ends. Anything
initialized in the MDThread class is practically global as far as threads are con-
cerned. It will live before and after the thread runs so that the client need not
be concerned about its lifetime.

3 Class Structure for Cross-Platform

When I described the class structure to Chris Myers, he just nodded his head
and said, ”Sure.” I get the impression this is a standard mixture of the patterns
from Design Patterns. The goal is to be able to use the same Thread class
on Win32, Linux, and whatever else even though the implementation is highly
system-dependent. We can mix and match a few patterns to make the process
transparent.

The first pattern is an abstract factory as shown in Fig. 1. It is a Singleton
instance, so your code can always retrieve the same reference to ProcessFactory
by calling the static member function ProcessFactory::Instance(). The only
trick to system dependence is that, before you use the factory, your code must
somewhere instantiate the version appropriate to your machine with a call to
UnixProcessFactory::Create() or WinProcessFactory::Create().

Now that the call to ProcessFactory::Instance() will now return the appro-
priate Unix or Windows version, you may use the member functions to cre-
ate process objects like a read-write lock or a simulation thread. They have
similar class structures to the process factory in that there is an abstract base

4



ProcessFactory
GetRWLock()
GetThread()

static Instance()

UnixProcessFactory
GetRWLock()
GetThread()

static Create()

WinProcessFactory
GetRWLock()
GetThread()

static Create()

Figure 1: The system-specific ProcessFactories are concrete instances of the
abstract ProcessFactory class. You must create only one of them, and do it
only once, by calling its Create() method. After that, your code can query the
ProcessFactory::Instance() without concern for which system you are on.

class RWLock and a system-dependent implementation, WinRWLock or UnixR-
WLock. The trick is that your code need not know which you need because the
concrete ProcessFactory decides which to give you.

References

[1] Programming Applications with Win32 by Richter. This is my favorite
place to learn about threads. It is mature and covers the basics.

[2] I have seen a recommendation for the nutshell book on Win32 Thread
Programming, but it looked lightweight in the bookstore.

[3] Compound Win32 Synchronization Objects by Ruediger R. Asche
http://msdn.microsoft.com/library/techart/msdn_locktest.htm
Implements read/write locks and group locks with timings.

[4] Synchronization on the Fly by Ruediger Asche http://msdn.microsoft.
com/library/techart/msdn_onthefly.htm Gives a demonstration of con-
currency analysis.

[5] Detecting Deadlocks in Multithreaded Win32 Applications by Ruediger R.
Asche http://msdn.microsoft.com/library/techart/msdn_deadlock.
htm Describes deadlock detection using Petri net formalism.

[6] The Implementation of DLDETECT.EXE by Ruediger R. Asche http://
msdn.microsoft.com/library/techart/msdn_dldetect.htm Part II of
the series.

5



[7] Putting DLDETECT to Work by Ruediger R. Asche http://msdn.
microsoft.com/library/techart/msdn_dldwork.htm Shows how to an-
alyze multithreading with Petri nets.

[8] Bugslayer, MSJ, October 1998 by John Robbins http://www.microsoft.
com/msj/1098/bugslayer/bugslayer1098.htm About an included utility
to detect deadlocks in your code.

[9] Win32 Q&A January 1997 by Richter http://msdn.microsoft.com/
library/periodic/period97/win320197.htm Implements WaitForMulti-
pleExpressions.

[10] Multithreading for Rookies by Ruediger R. Asche http://msdn.
microsoft.com/library/techart/msdn_threads.htm A wide introduc-
tion to Win32 threads, but it does cover APCs.

6


