
INTEGRATING ATOMISTIC AND CONTINUUM MODELS WITHIN THE DIGITAL MATERIAL SOFTWARE FRAMEWORK
C.-S. Chen, T. Cretegny, A. J. Dolgert, N. Bailey, C. R. Myers, J. P. Sethna, and A. R. Ingraffea
Cornell Theory Center and Laboratory of Atomistic and Solid State Physics, Cornell University

Supported by NSF/KDI #9873214, "Multiscale Modeling of Defects in Solids"www.tc.cornell.edu/Research/Multiscale

MOLECULAR DYNAMICS (MD) FRAMEWORK QUASICONTINUUM (QC) FRAMEWORK

Introduction: Digital Material is an extensible modeling and software infrastructure to support the
representation and simulation of material structure and evolution across multiple length and time
scales. Such an environment must balance the need for high performance against the need for
lightweight prototyping and interrogation. It must be able to integrate a variety of programs and tools
into a consistent and seamless framework for multiscale materials simulation. And it must support
code reuse across scales through appropriate decomposition of functionality among collections of
collaborating objects and modules.

Objectives: Digital Material is
intended to function in several roles:
! as a material representation
supporting descriptions of features
across many length scales (and
compositions of those features into
virtual material samples)
! as a programming environment
supporting simulation and analysis
of material samples at various
scales
! as a problem-solving environment
supporting interactive control and
interrogation of simulations, data,
etc.

DIGITAL MATERIAL

Strategies: The strategies we are pursuing to build this
environment are several:
! the use of a two-level software architecture, combining
low-level numerical kernels written in compiled languages
and a high-level interpreted control and integration layer
written in the interpreted programming language Python
! the use of Design Patterns and related object-oriented
programming techniques to decompose simulation
functionality among collaborating objects, in order to
support flexible program composition
! the development of object models for the hierarchy of
structures arising in materials, separated into explicitly
modeled geometric components and implicitly modeled
attributes, so as to support the migration of information
across scales.

Python & friends
interactive control & component glue

QCMD Phase Field

KMC

Hysteresis

FractureTexture

DFT

Parallelization Visualization IOMesh

Advantages:
! code sharing and reuse among projects
! flexible coupling and decoupling of
computational components
! collaboration from researchers among
different disciplines, and with different
codes
! direct benefit from world wide
development of Python modules
! a set of interoperable components to
create a whole that is much greater than
the sum of its parts
! software adaptivity in a responsive way
to match the volatility of changing
software and hardware requirements

Plasticity Fatigue

MD IN ACTION

Design Philosophy: We develop a molecular dynamics
framework with an eye for flexibility and efficiency. We
design and implement our numerical kernels using C++
and control and integrate the kernels using Python. The
functionalities of our framework are decomposed into 6
major base classes (see class diagram on the right). We
identify class interfaces and inheritance hierarchies that
are suitable for MD simulations. We develop patterns to
organize the interactions among computational objects,
and encapsulate those aspects of a program that are likely
to change.

NeighborLocators

Potential BoundaryConditions

ConstraintsMover
Verlet,

Conjugate Gradient,
...

Lennard Jones,
EMT,

...

ListOfAtoms

: Mover : ListOfAtoms

: Constraints

: BoundaryConditions

: NeighborLocator: Potential

1: IncrementCartesianPositions()
8: AdjustForces()

2: AdjustPositions()

9: AdjustForces()

3: EnforceBC()

4: U
pdatePositions()

6: C
alculateForces()

7: HalfNeighbors()

5:
D

iff
B

C
()

Object
Collaboration

SWIG
(Simplified Wrapper and Interface Generator)

RuntimeError:
NoNeighborLocator::ReturnTrue:

A function called Neighbors. Please set a
neighborLocator

>>>from MD import * # import the molecular dynamics package
>>>potential = EMTPotential() # we first choose to use Effective Medium Theory
>>>latticeSpacing = potential.GetLengthScale()*sqrt(2) # GetLengthScale() returns the interatomic
distance in the lattice at 0 K.
>>>lattice = FCCLattice(latticeSpacing) # we need an FCC lattice, but we could choose any type of
lattice
we need a list of atoms, where each atom has a position and a velocity.(->PrimitiveListOfAtoms)
>>>atoms = PrimitiveListOfAtoms()
we want to initialize the atoms' positions in a cube of size [100,100,100] in FCC configuration
>>>cube = RectangularClusterInitializer([100, 100, 100], lattice)
if we want to have the faces of the cube with the (111), (211), (011) orientations
>>>lattice.RotateLatticeVectors(array([[1/sqrt(3), 1/sqrt(3), 1/sqrt(3)], \

[-2/sqrt(6), 1/sqrt(6), 1/sqrt(6)], \
[0 , -1/sqrt(2),1/sqrt(2)]]))

we can of course change the center of the cube
>>>cube.SetCenter([1., 1., -2.])
now let's populate the atoms in the cube
>>>cube.Create(atoms)
>>>print "Number of Atoms: ", atoms.GetNumber() # how many atoms in the cube?
>>>plot = RasMol(atoms) # we like to see them and play
we can easily introduce a screw dislocation (i.e. shift the atoms according to Linear Elasticity)
>>>direction = [0, 0, 1]
>>>burgersVector = [0, 0, latticeSpacing/sqrt(2.)] # this corresponds to a 1/2(0 1 1) dislocation
>>>center = [0.1, 0.2, 0.3] # avoid cutting an atom
>>>dislocation = DislocationMaker(burgersVector, direction, center, 0.3) # last argument is an
estimation of the Poisson ratio
>>>dislocation.Transform(atoms)
>>>plot.Update()
now we let the atoms find their equilibrium configuration
>>>cg = ConjugateGradientMinimizer(1.0e-13, 1000) # argument is tolerance and maximum
number of iterations
>>>minimizer = MinimizerAtomsMover(cg, potential)
>>>print 'Initial potential energy in the cube', potential.CalculateEnergy(atoms)
ah! we forgot the set a neighbor locator
>>>neighborLocator = CellNeighborList(potential.GetCutoffDistance(), \

0.05*potential.GetCutoffDistance()) # the 2nd parameter is the drift for the neighbor list
>>>atoms.SetNeighborLocator(neighborLocator)
>>>print 'Initial potential energy in the cube', potential.CalculateEnergy(atoms)
>>>minimizer.Move(atoms)
>>>print 'Potential energy after relaxation', potential.CalculateEnergy(atoms)
>>>plot.Update()
>>>writer = NetCDFWriter('tmp.cdf') # create a file to save our atoms in NetCDF format
>>>writer.Put(atoms, 'myAtoms') # put the atoms in the file, under the name myAtoms
etc.

PythonC++

Number of Atoms: 12792

Initial potential energy in the cube
1220.53

Potential energy after relaxation
1193.38

Potential

class EMTPotential : public Potential
{
public:

EMTPotential(char *element = "Cu");
double GetLengthScale() const;

...

AtomsInitializers For the Domain

class RectangularClusterInitializer : public
ClusterInitializer
{
public:

RectangularClusterInitializer(double
rectangleSize[DIMENSION],
BravaisLatticeWithBasis *bravais);

...
class ClusterInitializer: public AtomsInitializer
{
public:

ClusterInitializer(BravaisLatticeWithBasis
*bravais);

void SetCenter(double
clusterCenter[DIMENSION]);

void Create(ListOfAtoms *atoms);
...

Mover

class ConjugateGradientMinimizer: public
Minimizer
{
public:

ConjugateGradientMinimizer(double tolerance,
int maximumIterations);

...
class MinimizerAtomsMover : public AtomsMover
{
public:

MinimizerAtomsMover(Minimizer *minimizer,
Potential *potential);

void Move(ListOfAtoms *atoms);
...

Meshing: We would like to sample defects down to the
atomic scale, while use "coarse-grained" atoms to represent the
homogeneous regions. We triangulate the representative atoms,
which defines a set of finite elements. The nodes of these

elements are initialized with slaved atoms.

Introduction: Quasicontinuum is a mixed atomistic-
continuum approach to blend the atomistic realism with finite
element interpolation. Our quasicontinuum framework is a
natural outgrowth of our molecular dynamics framework; we
have quite more the atomistic point of view than the finite
element's. Thus, our 6 major base classes designed in molecular
dynamics are heavily reused and extended in our
quasicontinuum code.

Our quasicontinuum framework is still under intensive
development and testing. Results presented here are
preliminary.

Atom Representation: We assume that in the solid
only a few atoms are representatives, whereas the other degrees
of freedom are somewhat constrained, or slaved to the position
of these representative atoms. We call the former master atoms,
the latter slave atoms and we have a container class for both of
them: ListOfMasterAtoms and ListOfSlavedAtoms. Both classes
are derived from ListOfAtoms from our molecular dynamics
framework.

Molecular Dynamics
Framework

Quasicontinuum Framework

Finite Element

Mesher

Error Estimator

Energy and Force Calculation: We compute the
total potential energy as the sum of the weighted potential from
each master atom. To find the equilibrium configuration we
compute the molecular dynamics forces on the masters due to
the other masters and the slaves using conjugate gradient
algorithm. When the master atoms move, the constraint on the
slave atoms increments their position according to the shape
functions of the element they belong to.

Error Estimation and Adaptive Meshing: To
optimally represent the atoms, we select our master atoms
guided by a posteriori error estimation from energy and force
calculation. Our re-meshing scheme for refinement and
coarsening is to:

! perform local deletion of elements (a.k.a. local cluster),
! reconstruct underlying elementwise lattice system, and
! re-mesh the cluster based on new internal points (derived
from error indicators) and boundary connectivity of the cluster.

Reference: V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz (1999) "An adaptive finite element approach to
atomic-scale mechanics-the quasicontinuum method" Journal of Mechanics and Physics of Solids, 47, pp. 611-642.

ListOfAtoms

positions

ListOfMasterAtoms

weights

ListOfSlavedAtoms

elements

ListOfAtoms

ListOfSlavedAtoms

Constraints

QCSlaveConstraints

adjustPositions()

for all o in slaves:
o.getElement()

o.position = shapeFunctions*mastersPosition

