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ABSTRACT

In seeking to understand at a microscopic level the response of dislocations to stress we
have undertaken to study as completely as possible the simplest case: a single dislocation in
a two dimensional crystal. The intention is that results from this study will be used as input
parameters in larger length scale simulations involving many defects. We present atomistic
simulations of defect motion in a two-dimensional material consisting of atoms interacting
through a modified Lennard-Jones potential. We focus on the regime where the shear stress
is smaller than its critical value, where there is a finite energy barrier for the dislocation to
hop one lattice spacing. In this regime motion of the dislocation will occur as single hops
through thermal activation over the barrier. Accurate knowledge of the barrier height is
crucial for obtaining the rates of such processes. We have calculated the energy barrier as a
function of two components of the stress tensor in a small system, and have obtained good
fits to a functional form with only a few adjustable parameters.

INTRODUCTION

This paper is concerned with the motion of a single dislocation. Thus there is no
dislocation-dislocation interaction; the interaction is between the dislocation and the ap-
plied stress. Furthermore we work in two dimensions, which eases the computational burden
and aids visualization. Having simplified the problem to this extent, we have a chance of
understanding it in detail. Once such understanding is developed, it will then make sense to
proceed to more realistic, though computationally more expensive, cases (e.g. three dimen-
sions, realistic potentials, etc.).

Our system consists of a relatively small (< 100) number of atoms in two dimensions
(2D) interacting through a Lennard-Jones potential which has been truncated and made
to go smoothly to zero at the cutoff distance (2.7σ; this is large enough for third neighbor
interactions to be included). The system has periodic boundary conditions in the vertical
direction, and rigid ‘walls’ on the sides. The walls are simply lines of atoms which are
constrained to move as rigid bodies. In addition the atoms in each of the next-to-outermost
columns are constrained to more rigidly in the x-direction, and independently in the y-
direction. This system for the boundaries is due to Tomasi [5]. If a shear stress is applied
to the boundary walls the dislocation will move by glide, but only if the shear stress is
above a certain critical value σc. The applied shear stress is the resolved shear stress in
this geometry. Note that the critical resolved shear stress for dislocation motion depends
on the other components of stress, hence knowledge of the resolved shear stress alone is not
enough to decide whether a given dislocation will move or not. At zero temperature, with
σxy < σc, the dislocation cannot move, but with a finite temperature, motion still occurs
as thermally activated hops over an energy barrier. This barrier corresponds to the Peierls
barrier for an edge dislocation in three dimensions. Our task was to calculate this barrier as



a function of all three components of the stress tensor (σxx, σxy, σyy). However so far, we have
only dealt with the dependence on the first two, since we have only begun to incorporate
the techniques necessary for applying a constant stress in the direction in which periodic
boundary conditions are imposed. We have considered only one size of system; finite size
effects are important. Extensions to all three components of stress and extrapolations to
large sizes are in progress.

THEORY

Thermal Activation
We concentrate on calculating the energy barrier to hopping for shear stress less than

the critical shear stress. For these values of shear, there exist so called fixed points of the
dynamics. These are associated with local minima in the potential. Two nearby minima are
separated by a barrier in the energy landscape (note that the saddle point of the barrier is
also a fixed point, albeit an unstable one). When the energy barrier is large compared to
the temperature, the transition rate between the states will have the form

R = ν exp(− EB
kBT

) (1)

where EB is the barrier height and ν is an attempt frequency which can be calculated from
the curvature of the potential landscape near the minimum and near the barrier top [7].
Because of the exponential, however, the rate is much more sensitive to EB than it is to ν.
Hence it is importance to know EB accurately to be able to reasonably calculate such rates.
For the dislocation, the rate of hopping is proportional to the velocity, and hence its mobility.
The barrier height is defined as follows. For any path between the two minima we find the
point along the path where the potential energy is greatest; call this value Emax. We then
consider all paths and take the one whose Emax is smallest. This is the minimum energy
path. The barrier height is minpaths{Emax}−Eintialstate. The location of the maximum energy
along the minimum energy path corresponds to a saddle point in the potential landscape.
Several methods exist for finding barrier heights. We use one which finds the whole minimum
energy path, called the ‘Nudged Elastic Band’ method [3].

Model and Potential
We model a small piece of two-dimensional material containing a single edge dislo-

cation atomistically, using methods of molecular dynamics. We use a classical pair po-
tential defined as follows: Lennard-Jones (6-12, with standard parameters ε and σ) for
r < rcut1 = 2.41308788σ, a quadratic in r2 for rcut1 < r < rcut2 = 2.7σ, and zero for r > rcut2.
This potential was formulated by Chen [4]. It is continuous and smooth everywhere. Exten-
sion to other potentials and other forms of the cutoff is planned. The units for the simulation
are determined by the parameters ε and σ in the potential, which are set to unity, hence all
energies are in units of ε, and distances in units of σ. Units of time, stress etc. all follow from
these. Often one makes a connection with physical systems by matching the parameters to
those of Argon, for which Lennard-Jones is a good potential. So, ε = 119.8KkB or ∼ 0.01eV,
and σ = 0.341nm [2]. However since we have a 2D system, there is little useful quantitative
comparison to made with experiment (for one thing, stress has different units in 2D than in
3D).

SIMULATION



We simulate an ‘N × N ’ system, where N is the number of rows on the left of the
dislocation; there are N − 1 on the right. Two extra columns are added to each side to
form the boundaries. Typically N = 7, which corresponds to 71 atoms. Simulation runs
consist of the following procedure: A set of atoms is configured as two lattices of slightly
differing lattice constants, and correspondingly different numbers of rows, placed together.
The atoms are relaxed by evolving the system using Langevin dynamics, after which there
was a localized dislocation. Next, a shear stress is applied which is just of sufficient strength
and duration to cause the dislocation to move one lattice spacing, after which the stress is
reset to zero and further relaxation is done. Copies are made of the relaxed system before
and after the move. The main part of the simulation consists of a loop in which stress is
applied to these copies, their energy is minimized using the ‘MDmin’ procedure, taken from
Ref. [1], and they are passed to the barrier finding routine, which uses the Nudged Elastic
Band method [3]. In this method a chain of replicas of the system is created forming a line
in configuration space between the local minima. Forces from the potential, and between
replicas are applied, with certain corrections, and the whole chain relaxed until it lies along
the minimum energy path. Once the barrier is calculated, the stress is incremented and the
loop repeats, minimizing the two copies now with a different stress, and so on. Fig. 1 shows
initial, final and saddlepoint configurations of the 7× 7 system.

Figure 1: Initial, final and saddle point configurations. These are for zero shear stress,
boundaries fixed in x-direction. Circles indicate the dislocation.

Curve-fitting: Finding the top.
In general there will not be a replica right at the saddle point, so given the energies of

the replicas it is necessary to do curve fitting to find the actual maximum energy along the
path, and hence the barrier height itself. The information returned from the routine includes
the configurations of the replicas and the Euclidean distance along the chain for each one,
called the reaction coordinate, as well as the energies. We must subtract the work done by
the external stress to find the relevant energy-quantity: at finite temperature it would be the
Gibbs free energy; at zero temperature it is equal to the enthalpy, and is the quantity that
is minimized in equilibrium when a constant force is applied. The set of distance-enthalpy
points can be plotted in order to visualize the shape of the barrier. To find the height, a
cubic is fitted to the top four points, see Fig 2; the position of the maximum can then be
simply calculated. An estimate of the uncertainty can be got from considering the top five
points and fitting to a quartic, and taking the difference of the two results. The difference
appeared only in the fifth digit, though close to critical shear, where convergence was not as
good, the relative error became large.
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Figure 2: A single barrier profile with the fitted cubic. σxx = 9.6, σxy = 0.8

Constant pressure simulations
The first runs were done with the boundary walls free only to move in the y-direction, and

fixed Ly, though it was intended that we would eventually have constant σxx and constant
σyy. A material is generally under fixed stress not fixed strain, so incorporating conditions
of constant stress, and hence fluctuating boundaries, is a more realistic approach. In fact
we found direct evidence of the necessity for constant stress simulations when we looked at
the system-size dependence of our results. The height of the barrier for σxy = 0 depended
strongly on system size—it decreased by a factor of two upon going from a 7× 7 system to
a 13× 13 one. Since we would like to believe that we can in fact get away with simulating
such small systems this was a worrying fact.

Including constant σxx was straightforward: we let the boundary walls move and put a
force in the x-direction on them. When the system was relaxed in the initial stage of the
simulation, the final separation of the boundaries was about half a lattice constant larger than
the fixed separation we had been using—the dislocation liked to take up more space than
an uninterrupted column of atoms, and hence there was a significant sideways pressure in
the fixed boundary simulations. When the system size was increased this pressure decreased
and since it was already clear that the barrier height depended on sideways pressure, this
would explain the dependence on system size in the earlier simulations. So increasing the
system size at fixed σxx should have a much smaller effect on the barrier.

In fact the barrier height was an increasing function of the system size when σxx was held
fixed. This was thought to be due to the vertical dimension of the sample being held fixed
(the dimension in which periodic boundary conditions were operating), hence there was a
varying effective pressure in this direction. Since there is no rigid boundary here as on the
sides, a more sophisticated technique must be used, similar to Parrinello-Rahman dynamics
[6]. Here, the lengths of the simulation cell in the different directions are allowed to vary
dynamically. The equations of motion are suitably modified to include this extra degree of
freedom. In the present case this only had to be done for the vertical direction, with the
variable Ly being introduced. However there are subtleties associated with combining this
technique with Nudged Elastic Band, not least the issue of defining an angle in a space which
has one axis corresponding to a length and the rest to dimensionless positions.

RESULTS

The energy barrier as a function of shear stress σxy with fixed σxx, for several values of
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Figure 3: Schematic representation of barriers in a periodic system. The shear stress is
positive, hence the system wants to move to the right. However we can calculate the barrier
to hop to the left by repeating the calculation with the opposite sign of shear.

σxx is shown in Fig 4. The dots are data points from barrier calculations; the solid lines
are three-parameter fits to a series expansion obtained by considering the one-dimensional
barrier problem. For stress larger than the critical value, there is no fixed point, and the
defect slides with periodically varying velocity. For stress smaller than the critical value, there
are two fixed points, a stable one corresponding to the local minimum, and an unstable one
corresponding to the barrier top (of course there are many more really, due to the periodicity
of the lattice). The appearance of two fixed points as the stress goes below σc (or equivalently
their disappearance as stress goes above σc) is a saddle-node bifurcation. Note that we also
have points for negative shear; this corresponds to hopping in the opposite direction for
positive shear, see Fig. 3. For large negative shear the barrier becomes simply the energy
difference between the two minima. These local minima only exist for |σxy| < σc (beyond
which the dislocation starts to slide in the appropriate direction), hence our data covers the
range −σc to σc, for several values of σxx.
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Figure 4: Energy barrier versus shear stress for 8.8 < σxx < 13.6. The curves have been
displaced vertically for clarity. Also included, but not readily visible are the one-dimensional
fits to the data.



CONCLUSIONS

We have calculated the barrier height for dislocation hopping for range of both σxx and
σxy. We have shown how this data can be parametrized to reasonable accuracy with a fit that
needs only a few parameters. These parameters could be used for example in a simulation
whose primitive objects are dislocations which move in a stress field. The present results,
augmented by σxx dependence, could be used to calculate the motion of each dislocation
given the values of the components of the stress tensor at its location (the stress field would
be calculated from the elastic fields of the other dislocations plus any external sources of
stress).

The next development in the simulation will be to include the dependence on the third
component of the stress tensor, σyy, which corresponds to pressure on the top and bottom of
the system. We have just started to be able to do runs at constant σyy, though there are sub-
tleties in combining this with the Nudged Elastic Band method. Once we are satisfied that
we can do this well, we will repeat with different inter-atomic potentials. Another aspect of
simulating this system is to consider shear stress above σc, where the dislocation slides con-
tinuously, if not quite steadily. Preliminary studies indicate interesting behaviour, including
a delocalization of the core structure at high velocity. We will add finite temperature later
as well, and eventually carry over this work into three dimensions and real potentials.
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