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Exercises

5.16 Fractal dimensions.
1 2 (Mathematics, Com-

plexity) ©4

There are many strange sets that emerge in sci-
ence. In statistical mechanics, such sets often arise
at continuous phase transitions, where self-similar
spatial structures arise (Chapter 12). In chaotic
dynamical systems, the attractor (the set of points
occupied at long times after the transients have dis-
appeared) is often a fractal (called a strange at-
tractor). These sets are often tenuous and jagged,
with holes on all length scales; see Figs 12.2, 12.5,
and 12.11.

We often try to characterize these strange sets by a
dimension. The dimensions of two extremely dif-
ferent sets can be the same; the path exhibited
by a random walk (embedded in three or more di-
mensions) is arguably a two-dimensional set (note 6
on p. 17), but does not locally look like a surface.
However, if two sets have different spatial dimen-
sions (measured in the same way) they are certainly
qualitatively different.

There is more than one way to define a dimen-
sion. Roughly speaking, strange sets are often
spatially inhomogeneous, and what dimension you
measure depends upon how you weight different re-
gions of the set. In this exercise, we will calcu-
late the information dimension (closely connected
to the non-equilibrium entropy), and the capacity
dimension (originally called the Hausdorff dimen-
sion, also sometimes called the fractal dimension).

To generate our strange set—along with some more
ordinary sets—we will use the logistic map3

f(x) = 4µx(1 − x). (1)

The attractor for the logistic map is a periodic orbit
(dimension zero) at µ = 0.8, and a chaotic, cusped
density filling two intervals (dimension one)4 at
µ = 0.9. At the onset of chaos at µ = µ∞ ≈

0.892486418 (Exercise 12.9) the dimension becomes
intermediate between zero and one; this strange,
self-similar set is called the Feigenbaum attractor.

Both the information dimension and the capacity
dimension are defined in terms of the occupation
Pn of cells of size ε in the limit as ε → 0.

(a) Write a routine which, given µ and a set of bin
sizes ε, does the following.

• Iterates f hundreds or thousands of times (to get
onto the attractor).

• Iterates f a large number Ntot more times, col-
lecting points on the attractor. (For µ ≤ µ∞, you
could just integrate 2n times for n fairly large.)

• For each ε, use a histogram to calculate the prob-
ability Pj that the points fall in the jth bin.

• Return the set of vectors Pj [ε].

You may wish to test your routine by using it
for µ = 1 (where the distribution should look
like ρ(x) = 1/π

√

x(1 − x), Exercise 4.3(b)) and
µ = 0.8 (where the distribution should look like
two δ-functions, each with half of the points).

The capacity dimension. The definition of the ca-
pacity dimension is motivated by the idea that it
takes at least

Ncover = V/εD (2)

bins of size εD to cover a D-dimensional set of
volume V .5 By taking logs of both sides we find

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 101. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3We also study this map in Exercises 4.3, 5.9, and 12.9.
4See Exercise 4.3. The chaotic region for the logistic map does not have a strange
attractor because the map is confined to one dimension; period-doubling cascades
for dynamical systems in higher spatial dimensions have fractal, strange attractors
in the chaotic region.
5Imagine covering the surface of a sphere in 3D with tiny cubes; the number of cubes
will go as the surface area (2D volume) divided by ε

2.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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log Ncover ≈ log V + D log ε. The capacity dimen-
sion is defined as the limit

Dcapacity = lim
ε→0

log Ncover

log ε
, (5.44)

but the convergence is slow (the error goes roughly
as log V/ log ε). Faster convergence is given by cal-
culating the slope of log N versus log ε:

Dcapacity = lim
ε→0

d log Ncover

d log ε
(5.45)

= lim
ε→0

log Nj+1 − log Nj

log εi+1 − log εi

. (3)

(b) Use your routine from part (a), write a routine
to calculate N [ε] by counting non-empty bins. Plot
Dcapacity from the fast convergence eqn 5.45 versus
the midpoint 1/2(log εi+1 + log εi). Does it appear to
extrapolate to D = 1 for µ = 0.9? 6 Does it appear
to extrapolate to D = 0 for µ = 0.8? Plot these two
curves together with the curve for µ∞. Does the last
one appear to converge to D1 ≈ 0.538, the capac-
ity dimension for the Feigenbaum attractor gleaned
from the literature? How small a deviation from
µ∞ does it take to see the numerical cross-over to
integer dimensions?

Entropy and the information dimension. The prob-
ability density ρ(xj) ≈ Pj/ε = (1/ε)(Nj/Ntot).
Converting the entropy formula 5.20 to a sum gives

S = −kB

∫

ρ(x) log(ρ(x)) dx

≈ −
∑

j

Pj

ε
log

(

Pj

ε

)

ε

= −
∑

j

Pj log Pj + log ε (4)

(setting the conversion factor kB = 1 for conve-
nience).

You might imagine that the entropy for a fixed-
point would be zero, and the entropy for a period-
m cycle would be kB log m. But this is incorrect;
when there is a fixed-point or a periodic limit cycle,
the attractor is on a set of dimension zero (a bunch
of points) rather than dimension one. The entropy
must go to minus infinity—since we have precise

information about where the trajectory sits at long
times. To estimate the ‘zero-dimensional’ entropy
kB log m on the computer, we would use the dis-
crete form of the entropy (eqn 5.19), summing over
bins Pj instead of integrating over x:

Sd=0 = −
∑

j

Pj log(Pj) = Sd=1 − log(ε). (5)

More generally, the ‘natural’ measure of the en-
tropy for a set with D dimensions might be defined
as

SD = −
∑

j

Pj log(Pj) + D log(ε). (5.48)

Instead of using this formula to define the entropy,
mathematicians use it to define the information di-
mension

Dinf = lim
ε→0

(

∑

Pj log Pj

)

/ log(ε). (6)

The information dimension agrees with the ordi-
nary dimension for sets that locally look like R

D. It
is different from the capacity dimension (eqn 5.44),
which counts each occupied bin equally; the in-
formation dimension counts heavily occupied parts
(bins) in the attractor more heavily. Again, we can
speed up the convergence by noting that eqn 5.48
says that

∑

j
Pj log Pj is a linear function of log ε

with slope D and intercept SD. Measuring the
slope directly, we find

Dinf = lim
ε→0

d
∑

j
Pj(ε) log Pj(ε)

d log ε
. (5.50)

(c) As in part (b), write a routine that plots Dinf

from eqn 5.50 as a function of the midpoint log ε,
as we increase the number of bins. Plot the curves
for µ = 0.9, µ = 0.8, and µ∞. Does the informa-
tion dimension agree with the ordinary one for the
first two? Does the last one appear to converge to
D1 ≈ 0.517098, the information dimension for the
Feigenbaum attractor from the literature?

Most ‘real world’ fractals have a whole spectrum of
different characteristic spatial dimensions; they are
multifractal.

6In the chaotic regions, keep the number of bins small compared to the number of
iterates in your sample, or you will start finding empty bins between points and
eventually get a dimension of zero.
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