
 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

Exercises

2.13 Building a percolation network.1 2 (Com-
plexity, Computation) ©4
Figure 2.12 shows what a large sheet of paper, held
at the edges, would look like if small holes were suc-
cessively punched out at random locations. Here
the ensemble averages over the different choices of
random locations for the holes; this figure shows
the sheet just before it fell apart. Certain choices of
hole positions would cut the sheet in two far earlier
(a straight line across the center) or somewhat later
(checkerboard patterns), but for the vast majority
of members of our ensemble the paper will have
the same kinds of hole patterns seen here. Again,
it is easier to analyze all the possible patterns of
punches than to predict a particular pattern.

Fig. 2.12 Bond percolation network. Each bond
on a 10 × 10 square lattice is present with probability
p = 0.4. This is below the percolation threshold p = 0.5
for the infinite lattice, and indeed the network breaks up
into individual clusters (each shaded separately). Note
the periodic boundary conditions. Note there are many
small clusters, and only a few large ones; here twelve
clusters of size S = 1, three of size S = 2, and one
cluster of size S = 29 (black). For a large lattice near
the percolation threshold the probability distribution of
cluster sizes ρ(S) forms a power law (Exercise 12.12).

Percolation theory is the study of the qualitative
change in connectivity of a large system as its com-
ponents are randomly removed. Outside physics, it
has become an archetype of criticality at continu-
ous transitions, presumably because the problem is
simple to state and the analysis does not demand
a background in equilibrium statistical mechanics.3

In this exercise, we will study bond percolation and
site percolation (Figs 2.12 and 2.13) in two dimen-
sions.

In the computer exercises portion of the web site
for this book [129], you will find some hint files and
graphic routines to facilitate the working of this
exercise.

Bond percolation on a square lattice.

(a) Define a 2D bond percolation network with peri-
odic boundary conditions on the computer, for size
L×L and bond probability p. For this exercise, the
nodes will be represented by pairs of integers (i, j).
You will need the method GetNeighbors(node),
which returns the neighbors of an existing node.
Use the bond-drawing software provided to draw
your bond percolation network for various p and
L, and use it to check that you have implemented
the periodic boundary conditions correctly. (There

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 33. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3Percolation is, in a formal sense, an equilibrium phase transition. One can show
that percolation is the q → 1 limit of an equilibrium q-state Potts model—a model
where each site has a spin which can take q different states (so q = 2 is the Ising
model) [25, section 8.4]. But you do not need partition functions and the Boltzmann
distribution to define the problem, or to study it.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

 C
op

yr
ig

ht
 O

xf
or

d
U

ni
ve

rs
ity

 P
re

ss
 2

00
6

 v
1.

0

2

are two basic approaches. You can start with an
empty network and use AddNode and AddEdge in
loops to generate the nodes, vertical bonds, and
horizontal bonds (see Exercise 1.7). Alternatively,
and more traditionally, you can set up a 2D ar-
ray of vertical and horizontal bonds, and imple-
ment GetNeighbors(node) by constructing the list
of neighbors from the bond networks when the site
is visited.)

The percolation threshold and duality. In most con-
tinuous phase transitions, one of the challenges is to
find the location of the transition. We chose bond
percolation on the square lattice because one can
argue, in the limit of large systems, that the per-
colation threshold pc = 1/2. The argument makes
use of the dual lattice.

The nodes of the dual lattice are the centers of the
squares between nodes in the original lattice. The
edges of the dual lattice are those which do not
cross an edge of the original lattice. Since every
potential dual edge crosses exactly one edge of the
original lattice, the probability p∗ of having bonds
on the dual lattice is 1 − p, where p is the prob-
ability of bonds for the original lattice. If we can
show that the dual lattice percolates if and only if
the original lattice does not, then pc = 1/2. This
is easiest to see graphically.

(b) Generate and print a small lattice with p = 0.4,
picking one where the largest cluster does not span
across either the vertical or the horizontal direction
(or print Fig. 2.12). Draw a path on the dual lattice
spanning the system from top to bottom and from
left to right. (You will be emulating a rat running
through a maze.) Is it clear for large systems that
the dual lattice will percolate if and only if the orig-
inal lattice does not?

Finding the clusters.

(c) Write the following two functions that together
find the clusters in the percolation network.

(1) FindClusterFromNode(graph, node, visited),
which returns the cluster in graph containing
node, and marks the sites in the cluster as hav-
ing been visited. The cluster is the union of
node, the neighbors, the neighbors of the neigh-
bors, etc. The trick is to use the set of visited
sites to avoid going around in circles. The ef-
ficient algorithm is a breadth-first traversal
of the graph, working outward from node in
shells. There will be a currentShell of nodes
whose neighbors have not yet been checked, and
a nextShell which will be considered after the

current one is finished (hence breadth first), as
follows.

– Initialize visited[node] = True,
cluster = [node], and
currentShell

= graph.GetNeighbors(node).

– While there are nodes in the new
currentShell:

∗ start a new empty nextShell;

∗ for each node in the current shell, if the
node has not been visited,

· add the node to the cluster,

· mark the node as visited,

· and add the neighbors of the node to the
nextShell;

∗ set the current shell to nextShell.

– Return the cluster.

(2) FindAllClusters(graph), which sets up the
visited set to be False for all nodes, and
calls FindClusterFromNode(graph, node,

visited) on all nodes that have not been
visited, collecting the resulting clusters. Op-
tionally, you may want to order the clusters
from largest to smallest, for convenience in the
graphics (and in finding the largest cluster).

Check your code by running it for small L and us-
ing the graphics software provided. Are the clusters,
drawn in different colors, correct?

Site percolation on a triangular lattice. Univer-
sality states that the statistical behavior of the
percolation clusters at long length scales should
be independent of the microscopic detail. That
is, removing bonds from a square lattice should
leave the same fractal patterns of holes, near pc,
as punching out circular holes in a sheet just be-
fore it falls apart. Nothing about your algorithms
from part (c) depended on their being four neigh-
bors of a node, or their even being nodes at all
sites. Let us implement site percolation on a trian-
gular lattice (Fig. 2.13); nodes are occupied with
probability p, with each node connected to any of
its six neighbor sites that are also filled (punching
out hexagons from a sheet of paper). The triangu-
lar site lattice also has a duality transformation, so
again pc = 0.5.

It is computationally convenient to label the site
at (x, y) on a triangular lattice by [i, j], where
x = i + j/2 and y = (

√
3/2)j. If we again use

periodic boundary conditions with 0 ≤ i < L and

 Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 -- Copyright Oxford University Press 2006 v1.0 --

Exercises 3

0 ≤ j < L, we cover a region in the shape of a
60◦ rhombus.4 Each site [i, j] has six neighbors, at
[i, j] + e with e = [1, 0], [0, 1], [−1, 1] upward and to
the right, and minus the same three downward and
to the left.

(d) Generate a site percolation network on a tri-
angular lattice. You can treat the sites one at a
time, using AddNode with probability p, and check
HasNode(neighbor) to bond to all existing neigh-
bors. Alternatively, you can start by generating a
whole matrix of random numbers in one sweep to
determine which sites are occupied by nodes, add
those nodes, and then fill in the bonds. Check
your resulting network by running it for small L
and using the graphics software provided. (Notice
the shifted periodic boundary conditions at the top
and bottom, see Fig. 2.13.) Use your routine from
part (c) to generate the clusters, and check these
(particularly at the periodic boundaries) using the
graphics software.

Fig. 2.13 Site percolation network. Each site on
a 10 × 10 triangular lattice is present with probability
p = 0.5, the percolation threshold for the infinite lattice.
Note the periodic boundary conditions at the sides, and
the shifted periodic boundaries at the top and bottom.

(e) Generate a small square-lattice bond percola-
tion cluster, perhaps 30 × 30, and compare with
a small triangular-lattice site percolation cluster.
They should look rather different in many ways.
Now generate a large5 cluster of each, perhaps
1000 × 1000 (or see Fig. 12.7). Stepping back and
blurring your eyes, do the two look substantially
similar?

Chapter 12 and Exercise 12.12 will discuss perco-
lation theory in more detail.

4The graphics software uses the periodic boundary conditions to shift this rhombus
back into a rectangle.
5Your code, if written properly, should run in a time of order N , the number of nodes.
If it seems to slow down more than a factor of 4 when you increase the length of the
side by a factor of two, then check for inefficiencies.

	Exercises
	Building a percolation network

