
Percolation
Myers/Sethna: Computational Methods for Nonlinear Systems

• Some applications

- flow in porous media (e.g., pressure-driven flow in rock)

- conductivity of disordered systems (e.g., random resistor networks)

- forest fires

- disease transmission in social networks

- patterns of retinal activity

bond percolation site percolation

Networks, Nodes, Code Reuse & Dynamic Typing

class UndirectedGraph:
 def __init__(self):
 self.neighbor_dict = {}

 def AddNode(self, node):
 # code to add a node

 def AddEdge(self, node1, node2):
 # code to add an edge connecting two nodes

 def HasNode(self, node):
 # return True if graph has specified node

• Many percolation simulations explicitly assume a grid of nodal
values, but we’re really just interested in an undirected graph.

• Can we reuse our UndirectedGraph code? What constitutes a
node?

• In dynamically typed language (like Python), any object can be
used as long its behavior is consistent with what is expected of it
(e.g., a node can be used as a key in a dictionary).

• In a statically typed language (like C++ or Java), we would need
to define a special Node base class to derive from.

• For percolation on a 2D lattice, want nodes as (i,j) index pairs.

Power laws, correlation lengths, finite-size scaling & universality

P(p) ~ (p-pc)β D(s) ~ s-τ

• Critical points imply
scale invariance and
power laws (see last
week’s lecture)

• Phase transitions
often involve a
diverging correlation
length ξ ~ |p-pc|-ν

• Diverging correlation
length constrained by
finite system size ➙
finite-size scaling

• Microscopically
different systems can
exhibit the same
critical properties ➙
universality (see last
week’s lecture)

probability of being in
infinite cluster

cluster size distribution

Three-dimensional bond percolation

g = UndirectedGraph()
g = Networks.UndirectedGraph()
for i in range(L):
 for j in range(L):
 for k in range(L):
 g.AddNode((i,j,k))
 if random.random() < p:
 g.AddEdge((i,j,k), ((i+1)%L,j,k))
 if random.random() < p:
 g.AddEdge((i,j,k), (i,(j+1)%L,k))
 if random.random() < p:
 g.AddEdge((i,j,k), (i,j,(k+1)%L))

visualization in OpenDX
(by Chris Pelkie, CTC)

Write new network generation code

Everything else (except visualization)
works as for 2D percolation

...or, one could percolate an existing
network (by removing bonds with
some probability) to understand its

structure by seeing how it falls apart.

