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Exercises

12.12 Percolation and universality.1 2 (Complex-
ity) ©4

Cluster size distribution: power laws at pc. A sys-
tem at its percolation threshold pc is self-similar.
When looked at on a longer length scale (say, with
a ruler with notches spaced 1 + ε farther apart,
for infinitesimal ε), the statistical behavior of the
large percolation clusters should be unchanged, if
we simultaneously rescale various measured proper-
ties according to certain rules. Let x be the length
and S be the size (number of nodes) in a percola-
tion cluster, and let n(S) be the probability that
a given cluster will be of size S at pc.

3 The clus-
ter measured with the new ruler will have a length
x′ = x/ (1 − ε), a size S′ = S/ (1 + cε), and will
occur with probability n′ = (1 + aε)n.

(a) In precise analogy to our analysis of the
avalanche size distribution (eqns 12.3–12.6), show
that the probability is a power law, n(S) ∝ S−τ .
What is τ , in terms of a and c?

In two dimensions, there are exact results known
for many properties of percolation. In particular,
it is known that4 τ = 187/91. You can test this
numerically, either with the code you developed for
Exercise 2.13, or by using the software at our web
site [129].

(b) Calculate the cluster size distribution n(S), both
for bond percolation on the square lattice and for
site percolation on the triangular lattice, for a large
system size (perhaps L × L with L = 400) at p =
pc.

5 At some moderate size S you will begin occa-
sionally to not have any avalanches; plot log(n(S))
versus log(S) for both bond and site percolation,

together with the power law n(S) ∝ S−187/91 pre-
dicted by the exact result. To make better use of
the data, one should bin the avalanches into larger
groups, especially for larger sizes where the data is
sparse. It is a bit tricky to do this nicely, and you
can get software to do this at our web site [129].
Do the plots again, now with all the data included,
using bins that start at size ranges 1 ≤ S < 2 and
grow by a factor of 1.2 for each bin. You should
see clear evidence that the distribution of clusters
does look like a power law (a straight line on your
log–log plot), and fairly convincing evidence that
the power law is converging to the exact result at
large S and large system sizes.

The size of the infinite cluster: power laws near
pc. Much of the physics of percolation above pc

revolves around the connected piece left after the
small clusters fall out, often called the percolation
cluster. For p > pc this largest cluster occupies a
fraction of the whole system, often called P (p).6

The fraction of nodes in this largest cluster for
p > pc is closely analogous to the T < Tc mag-
netization M(T ) in magnets (Fig. 12.6(b)) and the
density difference ρl(T )−ρg(T ) near the liquid–gas
critical point (Fig. 12.6(a)). In particular, the value
P (p) goes to zero continuously as p → pc.

Systems that are not at pc are not self-similar.
However, there is a scaling relation between sys-
tems at differing values of p − pc: a system coars-
ened by a factor 1 + ε will be similar to one farther
from pc by a factor 1+ε/ν, except that the percola-
tion cluster fraction P must be rescaled upward by

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 293. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3Hence the probability that a given node is in a cluster of size S is proportional to
Sn(S).
4A non-obvious result!
5Conveniently, the critical probability pc = 1/2 for both these systems, see Exer-
cise 2.13, part(c). This enormously simplifies the scaling analysis, since we do not
need to estimate pc as well as the critical exponents.
6For p < pc, there will still be a largest cluster, but it will not grow much bigger as
the system size grows and the fraction P (p) → 0 for p < pc as the system length
L → ∞.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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1 + βε/ν.7 This last rescaling reflects the fact that
the percolation cluster becomes more dense as you
coarse-grain, filling in or blurring away the smaller
holes. You may check, just as for the magnetization
(eqn 12.7), that

P (p) ∼ (pc − p)β. (12.60)

In two dimensions, β = 5/36 and ν = 4/3.

(c) Calculate the fraction of nodes P (p) in the
largest cluster, for both bond and site percolation,
at a series of points p = pc +2−n for as large a per-
colation lattice as is convenient, and a good range
of n. (Once you get your method debugged, n = 10
on an L×L lattice with L = 200 should be numer-
ically feasible.) Do a log–log plot of P (p) versus
p − pc, and compare along with the theory predic-
tion, eqn 12.60 with β = 5/36.

You should find that the numerics in part (c) are
not compelling, even for rather large system sizes.
The two curves look a bit like power laws, but the
slopes βeff on the log–log plot do not agree with one
another or with the theory. Worse, as you get close
to pc the curves, although noisy, definitely are not
going to zero. This is natural; there will always be
a largest cluster, and it is only as the system size
L → ∞ that the largest cluster can vanish as a
fraction of the system size.

Finite-size scaling (advanced). We can extract
better values for β from small simulations by ex-
plicitly including the length L into our analysis.
Let P (p, L) be the mean fraction of nodes8 in the
largest cluster for a system of size L.

(d) On a single graph, plot P (p,L) versus p for bond
percolation L = 5, 10, 20, 50, and 100, focusing on
the region around p = pc where they differ from
one another. (At L = 10 you will want p to range
from 0.25 to 0.75; for L = 50 the range should be
from 0.45 to 0.55 or so.) Five or ten points will be
fine. You will discover that the sample-to-sample
variations are large (another finite-size effect), so
average each curve over perhaps ten or twenty re-
alizations.

Each curve P (p, L) is rounded near pc, as the
characteristic cluster lengths reach the system box
length L. Thus this rounding is itself a symptom
of the universal long-distance behavior, and we can

study the dependence of the rounding on L to ex-
tract better values of the critical exponent β. We
will do this using a scaling collapse, rescaling the
horizontal and vertical axes so as to make all the
curves fall onto a single scaling function.

First, we must derive the scaling function for
P (p,L). We know that

L′ = L/(1 + ε),

(pc − p)′ = (1 + ε/ν)(pc − p),
(1)

since the system box length L rescales like any
other length. It is convenient to change vari-
ables from p to X = (pc − p)L1/ν ; let P (p, L) =
P̄ (L, (pc − p)L1/ν).

(e) Show that X is unchanged under coarse-
graining (eqn 12.61). (You can either show X ′ = X
up to terms of order ε2, or you can show dX/dε =
0.)

The combination X = (pc − p)L1/ν is another scal-
ing variable. The combination ξ = |p− pc|

−ν is the
way in which lengths diverge at the critical point,
and is called the correlation length. Two systems of
different lengths and different values of p should be
similar if the lengths are the same when measured
in units of ξ. L in units of ξ is L/ξ = Xν , so dif-
ferent systems with the same value of the scaling
variable X are statistically similar. We can turn
this verbal assertion into a mathematical scaling
form by studying how P̄ (L, X) coarse-grains.

(f) Using eqns 12.61 and the fact that P rescales
upward by (1 + βε/ν) under coarse-graining, write
the similarity relationship for P̄ corresponding to
eqn 12.11 for D̄(S, R). Following our derivation
of the scaling form for the avalanche size distri-
bution (through eqn 12.14), show that P̄ (L, X) =
L−β/νP(X) for some function P(X), and hence

P (p,L) ∝ L−β/νP((p − pc)L
1/ν). (12.62)

Presuming that P(X) goes to a finite value as
X → 0, derive the power law giving the percolation
cluster size L2P (pc, L) as a function of L. Derive
the power-law variation of P(X) as X → ∞ using
the fact that P (p,∞) ∝ (p − pc)

β.

Now, we can use eqn 12.62 to deduce how to rescale
our data. We can find the finite-sized scaling

7We again assure the reader that these particular combinations of Greek letters are
just chosen to give the conventional names for the critical exponents.
8You can take a microcanonical-style ensemble over all systems with exactly L2p
sites or 2L2p bonds, but it is simpler just to do an ensemble average over random
number seeds.
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Exercises 3

function P by plotting Lβ/νP (p,L) versus X =
(p − pc)L

1/ν , again with ν = 4/3 and β = 5/36.

(g) Plot Lβ/νP (p,L) versus X for X ∈
[−0.8, +0.8], plotting perhaps five points for each
curve, for both site percolation and bond percola-
tion. Use system sizes L = 5, 10, 20, and 50.
Average over many clusters for the smaller sizes
(perhaps 400 for L = 5), and over at least ten even
for the largest.

Your curves should collapse onto two scaling curves,

one for bond percolation and one for site perco-
lation.9 Notice here that the finite-sized scaling
curves collapse well for small L, while we would
need to go to much larger L to see good power laws
in P (p) directly (part (c)). Notice also that both
site percolation and bond percolation collapse for
the same value of β, even though the rough power
laws from part (c) seemed to differ. In an experi-
ment (or a theory for which exact results were not
available), one can use these scaling collapses to
estimate pc, β, and ν.

9These two curves should also have collapsed onto one another, given a suitable
rescaling of the horizontal and vertical axes, had we done the triangular lattice in a
square box instead of a rectangular box (which we got from shearing an L×L lattice).
The finite-size scaling function will in general depend on the boundary condition, and
in particular on the shape of the box.
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