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Exercises

12.9 Period doubling.1 2 (Mathematics, Complex-
ity) ©4
In this exercise, we use renormalization-group and
scaling methods to study the onset of chaos. There
are several routes by which a dynamical system can
start exhibiting chaotic motion; this exercise stud-
ies the period-doubling cascade, first extensively in-
vestigated by Feigenbaum.

Chaos is often associated with dynamics which
stretch and fold; when a batch of taffy is being
pulled, the motion of a speck in the taffy depends
sensitively on the initial conditions. A simple rep-
resentation of this physics is provided by the map3

f(x) = 4µx(1 − x) (12.38)

restricted to the domain (0, 1). It takes f(0) =
f(1) = 0, and f(1/2) = µ. Thus, for µ = 1 it pre-
cisely folds the unit interval in half, and stretches
it to cover the original domain.

0 1x
0

1

f(
x)

Fig. 12.21 Period-eight cycle. Iterating around the
attractor of the Feigenbaum map at µ = 0.89.

The study of dynamical systems (e.g., differential
equations and maps like eqn 12.38) often focuses on
the behavior after long times, where the trajectory
moves along the attractor. We can study the onset
and behavior of chaos in our system by observing
the evolution of the attractor as we change µ. For
small enough µ, all points shrink to the origin; the
origin is a stable fixed-point which attracts the en-
tire interval x ∈ (0, 1). For larger µ, we first get
a stable fixed-point inside the interval, and then
period doubling.

(a) Iteration: Set µ = 0.2; iterate f for some initial
points x0 of your choosing, and convince yourself
that they all are attracted to zero. Plot f and the
diagonal y = x on the same plot. Are there any
fixed-points other than x = 0? Repeat for µ = 0.3,
µ = 0.7, and 0.8. What happens?

On the same graph, plot f , the diagonal y = x, and
the segments {x0, x0}, {x0, f(x0)}, {f(x0), f(x0)},
{f(x0), f(f(x0))}, . . . (representing the conver-
gence of the trajectory to the attractor; see
Fig. 12.21). See how µ = 0.7 and 0.8 differ. Try
other values of µ.

By iterating the map many times, find a point a0

on the attractor. As above, then plot the successive
iterates of a0 for µ = 0.7, 0.8, 0.88, 0.89, 0.9, and
1.0.

You can see at higher µ that the system no longer
settles into a stationary state at long times. The
fixed-point where f(x) = x exists for all µ > 1/4, but
for larger µ it is no longer stable. If x∗ is a fixed-
point (so f(x∗) = x∗) we can add a small pertur-
bation f(x∗ + ε) ≈ f(x∗) + f ′(x∗)ε = x∗ + f ′(x∗)ε;
the fixed-point is stable (perturbations die away) if
|f ′(x∗)| < 1.4

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 288. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.
3We also study this map in Exercises 4.3, 5.9, and 5.16; parts (a) and (b) below
overlap somewhat with Exercise 4.3.
4In a continuous evolution, perturbations die away if the Jacobian of the derivative
at the fixed-point has all negative eigenvalues. For mappings, perturbations die away

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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In this particular case, once the fixed-point goes
unstable the motion after many iterations becomes
periodic, repeating itself after two iterations of the
map—so f(f(x)) has two new fixed-points. This
is called period doubling. Notice that by the chain
rule d f(f(x))/dx = f ′(x)f ′(f(x)), and indeed

d f [n]

dx
=

d f(f(. . . f(x) . . . ))

dx
(12.39)

= f ′(x)f ′(f(x)) . . . f ′(f(. . . f(x) . . . )),

so the stability of a period-N orbit is determined
by the product of the derivatives of f at each point
along the orbit.

(b) Analytics: Find the fixed-point x∗(µ) of the
map 12.38, and show that it exists and is stable
for 1/4 < µ < 3/4. If you are ambitious or have a
computer algebra program, show that the period-two
cycle is stable for 3/4 < µ < (1 +

√
6)/4.

(c) Bifurcation diagram: Plot the attractor as a
function of µ, for 0 < µ < 1; compare with
Fig. 12.16. (Pick regularly-spaced δµ, run ntransient

steps, record ncycles steps, and plot. After the rou-
tine is working, you should be able to push ntransient

and ncycles both larger than 100, and δµ < 0.01.)
Also plot the attractor for another one-humped map

fsin(x) = B sin(πx), (12.40)

for 0 < B < 1. Do the bifurcation diagrams appear
similar to one another?

δ

α

Fig. 12.22 Self-similarity in period-doubling

bifurcations. The period doublings occur at
geometrically-spaced values of the control parameter
µ∞ − µn ∝ δn, and the attractor during the period-
2n cycle is similar to one-half of the attractor during
the 2n+1-cycle, except inverted and larger, rescaling x

by a factor of α and µ by a factor of δ. The boxes
shown in the diagram illustrate this self-similarity; each
box looks like the next, except expanded by δ along the
horizontal µ axis and flipped and expanded by α along
the vertical axis.

Notice the complex, structured, chaotic region for
large µ (which we study in Exercise 4.3). How do
we get from a stable fixed-point µ < 3/4 to chaos?
The onset of chaos in this system occurs through a
cascade of period doublings. There is the sequence
of bifurcations as µ increases—the period-two cy-
cle starting at µ1 = 3/4, followed by a period-four
cycle starting at µ2, period-eight at µ3—a whole
period-doubling cascade. The convergence appears
geometrical, to a fixed-point µ∞:

µn ≈ µ∞ − Aδn, (1)

so

δ = lim
n→∞

(µn−1 − µn−2)/(µn − µn−1) (12.42)

and there is a similar geometrical self-similarity
along the x axis, with a (negative) scale factor α
relating each generation of the tree (Fig. 12.22).

In Exercise 4.3, we explained the boundaries in the
chaotic region as images of x = 1/2. These spe-
cial points are also convenient for studying period-
doubling. Since x = 1/2 is the maximum in the
curve, f ′(1/2) = 0. If it were a fixed-point (as it is
for µ = 1/2), it would not only be stable, but un-
usually so: a shift by ε away from the fixed point
converges after one step of the map to a distance
εf ′(1/2) + ε2/2f ′′(1/2) = O(ε2). We say that such
a fixed-point is superstable. If we have a period-
N orbit that passes through x = 1/2, so that the
Nth iterate fN (1/2) ≡ f(. . . f(1/2) . . . ) = 1/2, then
the orbit is also superstable, since (by eqn 12.39)
the derivative of the iterated map is the product
of the derivatives along the orbit, and hence is also
zero.

These superstable points happen roughly half-way
between the period-doubling bifurcations, and are
easier to locate, since we know that x = 1/2 is on the
orbit. Let us use them to investigate the geomet-
rical convergence and self-similarity of the period-
doubling bifurcation diagram from part (d). For
this part and part (h), you will need a routine that
finds the roots G(y) = 0 for functions G of one
variable y.

if all eigenvalues of the Jacobian have magnitude less than one.
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Exercises 3

(d) The Feigenbaum numbers and universality:
Numerically, find the values of µs

n at which the 2n-
cycle is superstable, for the first few values of n.
(Hint: Define a function G(µ) = f

[2n]
µ (1/2) − 1/2,

and find the root as a function of µ. In search-
ing for µs

n+1, you will want to search in a range
(µs

n + ε, µs
n + (µs

n − µs
n−1)/A) where A ∼ 3 works

pretty well. Calculate µ0 and µ1 by hand.) Cal-
culate the ratios (µs

n−1 − µs
n−2)/(µ

s
n − µs

n−1); do
they appear to converge to the Feigenbaum num-
ber δ = 4.6692016091029909 . . . ? Extrapolate the
series to µ∞ by using your last two reliable val-
ues of µs

n and eqn 12.42. In the superstable or-
bit with 2n points, the nearest point to x = 1/2
is f [2n−1](1/2).

5 Calculate the ratios of the ampli-

tudes f [2n−1](1/2) − 1/2 at successive values of n; do
they appear to converge to the universal value α =
−2.50290787509589284 . . . ? Calculate the same ra-
tios for the map f2(x) = B sin(πx); do α and δ ap-
pear to be universal (independent of the mapping)?

The limits α and δ are independent of the map, so
long as it folds (one hump) with a quadratic max-
imum. They are the same, also, for experimen-
tal systems with many degrees of freedom which
undergo the period-doubling cascade. This self-
similarity and universality suggests that we should
look for a renormalization-group explanation.

0 1x0

1

f (
f (

x)
) 

=
 f 

[2
] (x

)

Fig. 12.23 Renormalization-group transforma-

tion. The renormalization-group transformation takes
g(g(x)) in the small window with upper corner x∗ and
inverts and stretches it to fill the whole initial domain
and range (0, 1) × (0, 1).

(e) Coarse-graining in time. Plot f(f(x)) vs. x
for µ = 0.8, together with the line y = x (or see
Fig. 12.23). Notice that the period-two cycle of f
becomes a pair of stable fixed-points for f [2]. (We
are coarse-graining in time—removing every other
point in the time series, by studying f(f(x)) rather
than f .) Compare the plot with that for f(x) vs.
x for µ = 0.5. Notice that the region zoomed in
around x = 1/2 for f [2] = f(f(x)) looks quite a bit
like the entire map f at the smaller value µ = 0.5.
Plot f [4](x) at µ = 0.875; notice again the small
one-humped map near x = 1/2.

The fact that the one-humped map reappears in
smaller form just after the period-doubling bifur-
cation is the basic reason that succeeding bifurca-
tions so often follow one another. The fact that
many things are universal is due to the fact that
the little one-humped maps have a shape which be-
comes independent of the original map after several
period-doublings.

Let us define this renormalization-group trans-
formation T , taking function space into itself.
Roughly speaking, T will take the small upside-
down hump in f(f(x)) (Fig. 12.23), invert it, and
stretch it to cover the interval from (0, 1). Notice
in your graphs for part (g) that the line y = x
crosses the plot f(f(x)) not only at the two points
on the period-two attractor, but also (naturally) at
the old fixed-point x∗[f ] for f(x). This unstable
fixed-point plays the role for f [2] that the origin
played for f ; our renormalization-group rescaling
must map (x∗[f ], f(x∗)) = (x∗, x∗) to the origin.
The corner of the window that maps to (1, 0) is
conveniently located at 1 − x∗, since our map hap-
pens to be symmetric6 about x = 1/2. For a general
one-humped map g(x) with fixed-point x∗[g] the
side of the window is thus of length 2(x∗[g] − 1/2).
To invert and stretch, we must thus rescale by a fac-
tor α[g] = −1/(2(x∗[g]−1/2)). Our renormalization-
group transformation is thus a mapping T [g] taking
function space into itself, where

T [g](x) = α[g] (g (g(x/α[g] + x∗[g])) − x∗[g]) . (2)

(This is just rescaling x to squeeze into the window,
applying g twice, shifting the corner of the window

5This is true because, at the previous superstable orbit, 2n−1 iterates returned us to
the original point x = 1/2.
6For asymmetric maps, we would need to locate this other corner f(f(xc)) = x∗

numerically. As it happens, breaking this symmetry is irrelevant at the fixed-point.
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to the origin, and then rescaling by α to fill the
original range (0, 1) × (0, 1).)

(f) Scaling and the renormalization group: Write
routines that calculate x∗[g] and α[g], and de-
fine the renormalization-group transformation T [g].
Plot T [f ], T [T [f ]],. . . and compare them. Are we
approaching a fixed-point f∗ in function space?

This explains the self-similarity; in particular, the
value of α[g] as g iterates to f∗ becomes the Feigen-
baum number α = −2.5029 . . .

(g) Universality and the renormalization group:

Using the sine function of eqn 12.40, compare
T [T [fsin]] to T [T [f ]] at their onsets of chaos. Are
they approaching the same fixed-point?

By using this rapid convergence in function space,
one can prove both that there will (often) be an
infinite geometrical series of period-doubling bifur-
cations leading to chaos, and that this series will
share universal features (exponents α and δ and
features) that are independent of the original dy-
namics.
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