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Exercises

1.6 Random matrix theory.1 2 (Mathematics,
Quantum) ©3
One of the most active and unusual applications
of ensembles is random matrix theory, used to de-
scribe phenomena in nuclear physics, mesoscopic
quantum mechanics, and wave phenomena. Ran-
dom matrix theory was invented in a bold attempt
to describe the statistics of energy level spectra
in nuclei. In many cases, the statistical behavior
of systems exhibiting complex wave phenomena—
almost any correlations involving eigenvalues and
eigenstates—can be quantitatively modeled using
ensembles of matrices with completely random, un-
correlated entries!

To do this exercise, you will need to find a soft-
ware environment in which it is easy to (i) make
histograms and plot functions on the same graph,
(ii) find eigenvalues of matrices, sort them, and
collect the differences between neighboring ones,
and (iii) generate symmetric random matrices with
Gaussian and integer entries. Mathematica, Mat-
lab, Octave, and Python are all good choices. For
those who are not familiar with one of these pack-
ages, I will post hints on how to do these three
things under ‘Random matrix theory’ in the com-
puter exercises section of the book web site [129].

The most commonly explored ensemble of matrices
is the Gaussian orthogonal ensemble (GOE). Gen-
erating a member H of this ensemble of size N ×N
takes two steps.

• Generate an N × N matrix whose elements are
independent random numbers with Gaussian dis-
tributions of mean zero and standard deviation
σ = 1.

• Add each matrix to its transpose to symmetrize
it.

As a reminder, the Gaussian or normal probability
distribution of mean zero gives a random number

x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2

. (1)

One of the most striking properties that large ran-
dom matrices share is the distribution of level split-
tings.

(a) Generate an ensemble with M = 1000 or so
GOE matrices of size N = 2, 4, and 10. (More
is nice.) Find the eigenvalues λn of each matrix,
sorted in increasing order. Find the difference be-
tween neighboring eigenvalues λn+1−λn, for n, say,
equal to3 N/2. Plot a histogram of these eigen-
value splittings divided by the mean splitting, with
bin size small enough to see some of the fluctua-
tions. (Hint: Debug your work with M = 10, and
then change to M = 1000.)

What is this dip in the eigenvalue probability near
zero? It is called level repulsion.

For N = 2 the probability distribution for the
eigenvalue splitting can be calculated pretty sim-
ply. Let our matrix be M =

(

a b
b c

)

.

(b) Show that the eigenvalue difference for M is
λ =

√

(c − a)2 + 4b2 = 2
√

d2 + b2 where d =
(c − a)/2, and the trace c + a is irrelevant. Ignor-
ing the trace, the probability distribution of matrices
can be written ρM (d, b). What is the region in the
(b, d) plane corresponding to the range of eigenvalue
splittings (λ, λ+∆)? If ρM is continuous and finite
at d = b = 0, argue that the probability density ρ(λ)
of finding an eigenvalue splitting near λ = 0 van-
ishes (level repulsion). (Hint: Both d and b must
vanish to make λ = 0. Go to polar coordinates,
with λ the radius.)

(c) Calculate analytically the standard deviation of
a diagonal and an off-diagonal element of the GOE
ensemble (made by symmetrizing Gaussian random
matrices with σ = 1). You may want to check your
answer by plotting your predicted Gaussians over
the histogram of H11 and H12 from your ensemble

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 8. A pdf of the text is avail-
able at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the text).
Hyperlinks from this exercise into the text will work if the latter PDF is downloaded
into the same directory/folder as this PDF.
2This exercise was developed with the help of Piet Brouwer.
3Why not use all the eigenvalue splittings? The mean splitting can change slowly
through the spectrum, smearing the distribution a bit.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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2

in part (a). Calculate analytically the standard de-
viation of d = (c− a)/2 of the N = 2 GOE ensem-
ble of part (b), and show that it equals the standard
deviation of b.

(d) Calculate a formula for the probability distri-
bution of eigenvalue spacings for the N = 2 GOE,
by integrating over the probability density ρM (d, b).
(Hint: Polar coordinates again.)

If you rescale the eigenvalue splitting distribution
you found in part (d) to make the mean splitting
equal to one, you should find the distribution

ρWigner(s) =
πs

2
e−πs2/4. (1.6)

This is called the Wigner surmise; it is within 2%
of the correct answer for larger matrices as well.4

(e) Plot eqn 1.6 along with your N = 2 results from
part (a). Plot the Wigner surmise formula against
the plots for N = 4 and N = 10 as well.

Does the distribution of eigenvalues depend in de-
tail on our GOE ensemble? Or could it be uni-
versal, describing other ensembles of real symmet-
ric matrices as well? Let us define a ±1 ensem-
ble of real symmetric matrices, by generating an
N×N matrix whose elements are independent ran-
dom variables, each ±1 with equal probability.

(f) Generate an ensemble with M = 1000 ±1 sym-
metric matrices with size N = 2, 4, and 10. Plot
the eigenvalue distributions as in part (a). Are they
universal (independent of the ensemble up to the
mean spacing) for N = 2 and 4? Do they appear
to be nearly universal 5 (the same as for the GOE
in part (a)) for N = 10? Plot the Wigner surmise
along with your histogram for N = 10.

The GOE ensemble has some nice statistical prop-
erties. The ensemble is invariant under orthogonal

transformations:

H → R>HR with R> = R−1. (2)

(g) Show that Tr[H>H] is the sum of the squares of
all elements of H. Show that this trace is invariant
under orthogonal coordinate transformations (that
is, H → R>HR with R> = R−1). (Hint: Remem-
ber, or derive, the cyclic invariance of the trace:
Tr[ABC] = Tr[CAB].)

Note that this trace, for a symmetric matrix, is
the sum of the squares of the diagonal elements
plus twice the squares of the upper triangle of off-
diagonal elements. That is convenient, because in
our GOE ensemble the variance (squared standard
deviation) of the off-diagonal elements is half that
of the diagonal elements (part (c)).

(h) Write the probability density ρ(H) for finding
GOE ensemble member H in terms of the trace for-
mula in part (g). Argue, using your formula and
the invariance from part (g), that the GOE ensem-
ble is invariant under orthogonal transformations:
ρ(R>HR) = ρ(H).

This is our first example of an emergent symmetry.
Many different ensembles of symmetric matrices,
as the size N goes to infinity, have eigenvalue and
eigenvector distributions that are invariant under
orthogonal transformations even though the origi-
nal matrix ensemble did not have this symmetry.
Similarly, rotational symmetry emerges in random
walks on the square lattice as the number of steps
N goes to infinity, and also emerges on long length
scales for Ising models at their critical tempera-
tures.

4The distribution for large matrices is known and universal, but is much more com-
plicated to calculate.
5Note the spike at zero. There is a small probability that two rows or columns of our
matrix of ±1 will be the same, but this probability vanishes rapidly for large N .
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