
Small-world networks
Myers/Sethna: Computational Methods for Nonlinear Systems

• motivated by phenomenon of “six degrees of
separation”

• studied at Cornell by Duncan Watts and Steve
Strogatz

- Nature 393, 440-442 (1998)

- simple model of networks with regular
short-range bonds and random long-range
bonds

- examination of path lengths and clustering
in model and in real-world networks

• Course exercise

- calculation of shortest path lengths in
randomly wired graphs

- scaling of continuum limit

- application to real network data

- calculation of node and edge betweenness

- provided with simple visualization tool

from Watts and Strogatz (1998)

Computing for small-world networks:
data structures

• network = graph (a set of nodes connected by edges)

• interested here in undirected graphs (edge is symmetric
in two connecting nodes

• data structures for undirected graph?

- some use adjacency matrix

‣ aij = 1 if nodes i,j connected; 0 otherwise

- we will use a neighbor dictionary

‣ dictionary maps key to value

‣ neighbor_dict[i] = [j0, j1, j2, ...]

‣ i.e., for a node i, we store a list [j0, j1, j2, ...] of
nodes that i is connected to

‣ neighbor dictionary is directed (asymmetric), so
we need to duplicate connections

- if i points to j, then j must point to i

‣ add a new entry to the dictionary when a new
node is added, append to an existing entry when
an existing node is connected to

Computing for small-world networks:
object-oriented programming

• object-oriented programming

- definition of new datatypes, along with associated
behavior

- encapsulate details of internal implementation
(e.g., neighbor dictionary vs. adjacency matrix)
without modifying external interface

• python class keyword allows definition of new class
of objects

class UndirectedGraph:
 def __init__(self):
 self.neighbor_dict = {}

 def AddNode(self, node):
 # code to add a node

 def AddEdge(self, node1, node2):
 # code to add an edge connecting two nodes

 def HasNode(self, node):
 # return True if graph has specified node

 # etc.

>>> g = UndirectedGraph()
>>> g.AddNode(0)
>>> g.AddEdge(1,2)
>>> g.AddEdge(2,3)
>>> g.HasNode(4)
False

“self” refers to the
particular object instance we
are working with, in this
case the graph “g”

g.AddNode(0) is shorthand for
UndirectedGraph.AddNode(g,0)

0

1 2

3

Computing for small-world networks:
graph traversal algorithms

• graph traversal

- iterating through a graph (i.e., over its nodes and
edges) and calculating some quantity of interest

‣ average shortest path: shortest path between all
pairs of nodes in a graph

‣ node and edge betweenness: what fraction of
shortest paths each node or edge participates in

‣ connected clusters (percolation)

- traversing nodes and edges, marking nodes as visited
so they get visited only once

‣ most common: breadth-first and depth-first

• breadth-first search

- involves iterating through the neighbors of all the
nodes in the current shell, and adding to the next
shell all subsequent neighbors which have not
already been visited

0

Depth-first

1

2

3

4

5 6

7

0

Breadth-first

1

4

5

2

6 7

3

Small-world networks: exercise and demo

• demo

- create and display small-world networks for various
parameters

- compute average shortest path lengths

- perform scaling collapse of path lengths (continuum
limit analysis of Watts and Newman)

- examine shortest path length and clustering
coefficient

- compute and display edge and node betweenness
(using algorithm of Girvan and Newman)

