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Exercises

8.10 Stochastic cells.
1 2 (Biology, Computation) ©4

Living cells are amazingly complex mixtures of a
variety of complex molecules (RNA, DNA, pro-
teins, lipids, . . . ) that are constantly undergoing
reactions with one another. This complex of reac-
tions has been compared to computation; the cell
gets input from external and internal sensors, and
through an intricate series of reactions produces an
appropriate response. Thus, for example, receptor
cells in the retina ‘listen’ for light and respond by
triggering a nerve impulse.

The kinetics of chemical reactions are usually de-
scribed using differential equations for the concen-
trations of the various chemicals, and rarely are
statistical fluctuations considered important. In a
cell, the numbers of molecules of a given type can be
rather small; indeed, there is (often) only one copy
of the relevant part of DNA for a given reaction. It
is an important question whether and when we may
describe the dynamics inside the cell using continu-
ous concentration variables, even though the actual
numbers of molecules are always integers.
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Fig. 8.11 Dimerization reaction. A Petri net dia-
gram for a dimerization reaction, with dimerization rate
kb and dimer dissociation rate ku.

Consider a dimerization reaction; a molecule M
(called the ‘monomer’) joins up with another
monomer and becomes a dimer D: 2M ←→ D.
Proteins in cells often form dimers; sometimes (as
here) both proteins are the same (homodimers)
and sometimes they are different proteins (het-
erodimers). Suppose the forward reaction rate is kd

and the backward reaction rate is ku. Figure 8.11
shows this as a Petri net [50] with each reaction
shown as a box, with incoming arrows showing
species that are consumed by the reaction, and out-
going arrows showing species that are produced by
the reaction; the number consumed or produced
(the stoichiometry) is given by a label on each ar-
row. There are thus two reactions: the backward
unbinding reaction rate per unit volume is ku[D]
(each dimer disassociates with rate ku), and the
forward binding reaction rate per unit volume is
kb[M ]2 (since each monomer must wait for a col-
lision with another monomer before binding, the
rate is proportional to the monomer concentration
squared).

The brackets [.] denote concentrations. We as-
sume that the volume per cell is such that one
molecule per cell is 1 nM (10−9 moles per liter).
For convenience, we shall pick nanomoles as our
unit of concentration, so [M ] is also the number of
monomers in the cell. Assume kb = 1 nM−1s−1 and
ku = 2 s−1, and that at t = 0 all N monomers are
unbound.

(a) Continuum dimerization. Write the differen-
tial equation for dM/dt treating M and D as con-
tinuous variables. (Hint: Remember that two M
molecules are consumed in each reaction.) What
are the equilibrium concentrations for [M ] and [D]
for N = 2 molecules in the cell, assuming these con-
tinuous equations and the values above for kb and
ku? For N = 90 and N = 10 100 molecules? Nu-
merically solve your differential equation for M(t)

1From Statistical Mechanics: Entropy, Order Parameters, and Complexity by James
P. Sethna, copyright Oxford University Press, 2007, page 178. A pdf of the text is
available at pages.physics.cornell.edu/sethna/StatMech/ (select the picture of the
text). Hyperlinks from this exercise into the text will work if the latter PDF is
downloaded into the same directory/folder as this PDF.
2This exercise and the associated software were developed in collaboration with
Christopher Myers.

http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
http://www.lassp.cornell.edu/sethna
http://www.lassp.cornell.edu/sethna
http://www.us.oup.com/us/catalog/general/subject/Physics/QuantumPhysics/?view=usa&ci=9780198566779
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
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for N = 2 and N = 90, and verify that your so-
lution settles down to the equilibrium values you
found.

For large numbers of molecules in the cell, we ex-
pect that the continuum equations may work well,
but for just a few molecules there surely will be rel-
atively large fluctuations. These fluctuations are
called shot noise, named in early studies of elec-
trical noise at low currents due to individual elec-
trons in a resistor. We can implement a Monte
Carlo algorithm to simulate this shot noise.3 Sup-
pose the reactions have rates Γi, with total rate
Γtot =

∑
i
Γi. The idea is that the expected time

to the next reaction is 1/Γtot, and the probability
that the next reaction will be j is Γj/Γtot. To sim-
ulate until a final time tf , the algorithm runs as
follows.

(1) Calculate a list of the rates of all reactions in
the system.

(2) Find the total rate Γtot.

(3) Pick a random time twait with probability dis-
tribution ρ(t) = Γtot exp(−Γtot t).

(4) If the current time t plus twait is bigger than
tf , no further reactions will take place; return.

(5) Otherwise,

– increment t by twait,

– pick a random number r uniformly dis-
tributed in the range [0, Γtot),

– pick the reaction j for which
∑

i<j
Γi ≤

r <
∑

i<j+1
Γi (that is, r lands in the jth

interval of the sum forming Γtot),

– execute that reaction, by incrementing
each chemical involved by its stoichiom-
etry.

(6) Repeat.

There is one important additional change:4 the
binding reaction rate for M total monomers bind-
ing is no longer kbM

2 for discrete molecules; it is
kbM(M − 1).5

(b) Stochastic dimerization. Implement this al-
gorithm for the dimerization reaction of part (a).
Simulate for N = 2, N = 90, and N = 10 100
and compare a few stochastic realizations with the
continuum solution. How large a value of N do you
need for the individual reactions to be well described
by the continuum equations (say, fluctuations less
than ±20% at late times)?

Measuring the concentrations in a single cell is of-
ten a challenge. Experiments often average over
many cells. Such experiments will measure a
smooth time evolution even though the individual
cells are noisy. Let us investigate whether this en-
semble average is well described by the continuum
equations.

(c) Average stochastic dimerization. Find the
average of many realizations of your stochastic
dimerization in part (b), for N = 2 and N =
90, and compare with your deterministic solution.
How much is the long-term average shifted by the
stochastic noise? How large a value of N do you
need for the ensemble average of M(t) to be well
described by the continuum equations (say, shifted
by less than 5% at late times)?

3In the context of chemical simulations, this algorithm is named after Gillespie [45];
the same basic approach was used just a bit earlier in the Ising model by Bortz, Ka-
los, and Lebowitz [19], and is called continuous-time Monte Carlo in that context.

4Without this change, if you start with an odd number of cells your concentrations
can go negative!
5Again [M ] = M , because we assume one molecule per cell gives a concentration of
1 nM.
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