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p. 13, Exercise 1.8(c)
Change wording in the first two sentences, previously “is linear in the number
of nodes . . . (Hint:. . . for some α)”, hence

(c) Argue that the time needed to translate the 3-colorability problem
into a 3SAT problem grows at most quadratically in the number of
nodes M in the graph (less than αM2 for some α for large M).
(Hint: the number of edges of a graph is at most M2.) Given an
algorithm that guarantees a solution to . . .

p. 32, Exercise 2.12
I got feedback from both Jean-Philippe Boucheau (a friend) and A. J. Sutter
(an Amazon reviewer) that I should mention the failings of the Black–Scholes
model. In reprinting we’re asked not to repaginate, so the caveats are brief.. . .
Change “In this exercise we shall . . . assumptions” to

Black and Scholes make several assumptions: no jumps in stock
prices, instant trading, etc. These assumed, there is a risk-free strat-
egy and a fair price for the derivative, at which no net profit is made.
(The 1987 market crash may have been caused by traders using the
model, a seeming conspiracy to punish those who think they can
eliminate risk.) We treat a special case.
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p. 32, Exercise 2.12, second itemized entry needs to fit on two lines
Change “The stock has only two possible values at the date. . . ” to “The stock
hase one of two values at the date. . . ”, hence

• The stock has one of two values at the date of the option (the
expiration date), Xu > Xd.40

p. 44, note 25
Change
“Boltzmann’s constant kB is the”
to
“Boltzmann’s constant kB = 1.3807× 10−23 J/K is the”
hence

25We shall see that temperature is naturally measured in units of
energy. Historically we measure temperature in degrees and energy
in various other units (Joules, ergs, calories, eV, foot-pounds, . . . );
Boltzmann’s constant kB = 1.3807 × 10−23 J/K is the conversion
factor between units of temperature and units of energy.

p. 109, figure 6.2
Change “i” to “j” in subscript ER

j on left-hand side of figure (new PostScript
figure provided, Fig 1)

p. 110, equation 6.24, second line
Change “−kBT ” to “+kBT ”
p. 110, equation 6.24, third line line
Change “−kBT ” to “+kBT ”
hence

Aindist
ideal =−kBT log

(
(L/λ)3N/N !

)
=−NkBT log(V/λ3) + kBT log(N !)

∼−NkBT log(V/λ3) + kBT (N log N − N)

=−NkBT
(
log(V/Nλ3) + 1

)
= NkBT

(
log(ρλ3) − 1

)
, (6.24)
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Figure 1: New figure 6.2

p. 146, eqn 7.56
Change “ 1

M ” to “ 1
M !” in second line, first equality AND remove summation over

M in second line, second equality, hence

ΞNI,MB =
∑
M

1
M !

(
ZNI,MB

M

)M

eMβμ =
∑
M

1
M !

(∑
k

e−βεk

)M

eMβμ

=
∑
M

1
M !

(∑
k

e−β(εk−μ)

)M

= exp

(∑
k

e−β(εk−μ)

)
=
∏
k

exp
(
e−β(εk−μ)

)
. (7.56)

p. 164, figure 8.2
Change “M” to “m” on vertical axis of plot in figure (new PostScript figure
provided, Fig 2)

p. 171, note 24
Change e−nτ to e−n/τ in last inline equation, hence
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Figure 2: New figure 8.2

24The eigenvectors closest to one will be the slowest to decay. You
can get the slowest characteristic time τ for a Markov chain by find-
ing the largest |λmax| < 1 and setting λn = e−n/τ .

p. 172, figure 8.7
Change “M” to “m” on vertical axis of plot in figure (new PostScript figure
provided, Fig 3)

p. 175, exercise 8.3, title
Change
“Waiting for Godot, and Markov”
to
“Coin flips and Markov”
(I was confused. The play with the coin flips was Rosencrantz & Guildenstern
Are Dead, not Waiting for Godot.)

p. 217, second line:
Change “τ” to boldface “r” in inline equation, hence

. . . decays as a power law C(r, 0) ∼ r−(d−2+η) at long distances. . .

p. 218, between equations 10.6 and 10.7
Change “linearize” to “expand”, hence
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Figure 3: New figure 8.7

. . . Let us assume the fluctuations are small, and expand about 〈ρ〉 =
ρ0:. . .

p. 222, second line, inline equation
Change boldface “x” to boldface “r” TWICE, hence

. . . In the case of the ideal perfume gas, the equal-time correlations
(eqn 10.16) are C ideal(r, 0) = 1/(βα) δ(r), and the evolution law is
given by the diffusion equation. . . .

p. 222, equation 10.26
Change “t” to “τ” FOUR TIMES, hence

C ideal(r, τ) =
1

βα
G(r, τ) =

1
βα

(
1√

4πDτ

)3

e−r2/4Dτ . (10.26)

p. 224, equation 10.37
Change χ(ω) to χ̃(ω) in last term of top line, hence

p(ω) =
ω|fω|2

2

∫ ∞

−∞
dτ χ(τ) sin(ωτ) =

ω|fω|2
2

Im[χ̃(ω)]

=
ω|fω|2

2
χ′′(ω). (10.37)
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p. 226, equation 10.50
Change χ0(0) to χ̃0(0), hence〈〈s〉2space

〉
=

kBT χ̃0(0)
V

(10.50)

p. 227, equation 10.52
Change dt′ to dτ in last integral, hence

s(x, t) = . . . =
∫

dx′
∫ ∞

t

dτ χ(x − x′, τ)f(x′), (10.52)

p. 229, last line, first paragraph
Change C(ω) to C̃(ω), hence

. . . fluctuations C̃(ω); hence the name fluctuation-dissipation theo-
rem.

p. 230, equation 10.71
Change

∮
to
∫

twice in first line, hence∫
small

semicircle

χ̃(ω′)
ω′ − ω

dω′ ≈ χ̃(ω)
∫

small
semicircle

1
ω′ − ω

dω′

= . . .

= . . . . (10.71)

p. 233, exercise 10.1
Equation 10.79: Change “Θ̃” to “Θ̂” (tilde to widehat), hence

Ĉ(k, t = 0) = |Θ̂(k, t = 0)|2/V = Akns−3, (10.79)

p. 233, exercise 10.1
Part (a) Change “Θ” to “Θ̂” all four times it appears, hence:

(a) Given an initial Θ̂(k, t = 0) and assuming (∂Θ̂/∂t)|t=0 = 0,
calculate Θ̂(k, t) from eqn 10.78. Calculate Ĉ(k, t) =

〈
|Θ̂(k, t)|2

〉
in terms of A, c, and R given ns = 1. For what value of L (in light
years and in centimeters) will k220 be the first peak34 of k2Ĉ(k, t) at
the decoupling time, if R = 0.7? (Hint: c = 3×1010cm/s, t = 380 000
years, and there happen to be about π × 107 seconds in a year.)
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Figure 4: New figure 11.1

p. 241, figure 11.1(a)
Change “(Tv, Vv)” to “(Tv, Pv)” label on figure (new PostScript figure provided,
Fig 4)

p. 248, second line AND equation 11.12 AND equation 11.16
Change “Fsurface” to “Fsurface”, hence

. . . domains. We will focus on the evolution of a sphere as a solvable
case. The surface tension energy for a sphere of radius R is Fsurface =
4πR2σ, so there is an inward force per unit area, (or traction) τ :

τ =
∂Fsurface

∂R

/
(4πR2) = 2σ/R. (11.12)

. . .

Δμ =
dFsurface

dR

/dN

dR
= (8πσR)/(4πR2ρ) =

2σ

Rρ
. (11.16)

p. 248, above equation 11.13
Change
“traction, with some coefficient γ:”
to
“traction and an interface mobility η:”
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p. 248, equation 11.13 AND equation 11.14
Change “γ” to “η” (twice in 11.13 and three times in 11.14), hence

dR

dt
= −ητ = −η

2σ

R
. (11.13)

We can solve for the time tf it takes for the sphere to disappear,
and hence find out how L(t) grows for the non-conserved case:∫ 0

R0

R dR =
∫ tf

0

−2ση dt,

R2
0/2 = 2σηtf , (11.14)

L(t) ∼ R0 =
√

4σηt ∝ √
t.

p. 248 and 249
I previously confused the mobility μ with the diffusion constant D, and treated
J as a volume flux rather than a number flux. This leads to several substantive
changes in this section:
(a) eqns. 11.15, 11.17, 11.18, and 11.19 are altered,
(b) the sentence above equation 11.15 is altered,
(c) a portion of a sentence just below 11.15 is added,
(d) the clause after the semicolon is altered just above equation 11.16,
and (e) the sentence between equations 11.17 and 11.18 is altered (“current
density” changed to “number flux per unit area”).
The text in this vicinity now reads

The argument for the case of a conserved order parameter is quite
similar in spirit (Fig. 11.9). Here the curvature sets up a gradient
in the chemical potential ∂μ/∂x which causes molecules to diffuse
from regions of high positive curvature to regions of low or negative
curvature. The velocity of a particle will be given by the particle
mobility γ = D/kBT (Einstein’s relation) times the gradient of the
chemical potential,

v = γ∇μ ⇒ J = ρv = ργ∇μ (11.15)

where J is the current per unit area and ρ is the particle density. The
chemical potential change for moving a molecule from our sphere of
radius R to some flat interface is just the free energy change for
removing one particle; since the number of particles in our sphere is
N = 4/3πR3ρ,

Δμ =
dFsurface

dR

/dN

dR
= (8πσR)/(4πR2ρ) =

2σ

Rρ
. (11.16)
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The distance ΔR from the surface of our sphere to another flatter
surface of the same phase is (by our assumption of only one charac-
teristic length scale) also of order R, so

J ∼ ργ
Δμ

ΔR
∼ 2γσ

R2
. (11.17)

The rate of change of volume of the droplet is number flux per unit
area J times the surface area, divided by the number per unit volume
ρ:

dVdroplet

dt
=

4
3
π

(
3R2 dR

dt

)
= − AdropletJ

ρ
= −(4πR2)

2γσ

ρR2
= −8πγσ

ρ
,

dR

dt
= − 2γσ

ρ

1
R2

, (11.18)∫ 0

R0

R2 dR =
∫ tf

0

−2γσ

ρ
dt,

R3
0

3
=

2γσ

ρ
tf ,

and so

L(t) ∼ R0 =
(

6γσ

ρ
t

)1/3

∝ t1/3. (11.19)

This crude calculation—almost dimensional analysis—leads us to
the correct conclusion that conserved order parameters should coarsen
with L(t) ∼ tβ with β = 1/3, if bulk diffusion dominates the transport.

p. 252, exercise 11.2
Change “Detach the page or trace over it” to “Trace over the figure, or download
a version from the text web site [126].”

p. 275, figure caption to 12.12
Change T1 to t in inline equation, third line from end, hence

. . . by a factor B and f by some factor A, so f ′(Tc − t, y) = Af(Tc −
t, By) = f(Tc − Et, y) for large distances y.

p. 277, second line
Change er to (1 + eε)r, hence
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A system at R = Rc + r after coarse-graining will be similar to
a system further from the critical disorder, at R = Rc + Er =
Rc + (1 + eε)r, so. . .

p. 277, equation 12.10
Change Sσr to Se/cr, hence

X ′ = S′e/cr′ = (S/C)e/c(Er) = (S/ (1 + cε))e/c ((1 + eε)r)

= Se/cr

(
1 + eε

(1 + cε)e/c

)
= Se/cr + O(ε2) = X + O(ε2). (12.10)

p. 291, exercise 12.9(g)
Change “plot T [T [fsin]] and compare with T [T [f ]]” to “compare T [T [fsin]] to
T [T [f ]] at their onsets of chaos”, hence

(g) Universality and the renormalization group: Using the sine func-
tion of eqn 12.40, compare T [T [fsin]] to T [T [f ]] at their onsets of
chaos. Are they approaching the same fixed-point?

p. 336, sub-index entry for “Ideal gas!free energy density functional”
Change
“linearized” to
“expanded about ρ0”

Rear endpaper, paperback version:
Weird printing problems with four figures on lower right-hand side (striped
martensite, snowflake, and two Ising model square-grid figures).
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