
Chaos, Lyapunov, and entropy increase
(Sethna, "Entropy, Order Parameters, and Complexity", ex. 5.9)

© 2017, James Sethna, all rights reserved. This exercise was developed in collaboration with
Christopher Myers.

Chaotic dynamical systems have sensitive dependence on initial conditions. This is commonly
described as the `butterfly effect' (due to Lorenz of the Lorenz attractor): the effects of the flap
of a butterfly's wings in Brazil build up with time until months later a tornado in Texas could
be launched. In this exercise, we will see this sensitive dependence for a particular system
(the logistic map) and measure the sensitivity by defining the Lyapunov exponents.

Import packages

In [ ]:

The logistic map takes the interval  into itself:

where the time evolution is given by iterating the map:

In particular, for  it precisely folds the unit interval in half, and stretches it (non-
uniformly) to cover the original domain.

(0, 1)

𝑓(𝑥) = 4𝜇𝑥(1 − 𝑥),

, , ,… = , 𝑓( ), 𝑓(𝑓( )),… .𝑥0 𝑥1 𝑥2 𝑥0 𝑥0 𝑥0
𝜇 = 1

In [ ]:

The mathematics community lumps together continuous dynamical evolution laws and
discrete mappings as both being dynamical systems. (The Poincar'e section, as described in
the exercise 'Jupiter', takes a continuous, recirculating dynamical system and replaces it with
a once-return map, providing the standard motivation for treating maps and continuous

# Sometimes gives interactive new windows|
# Must show() after plot, figure() before new plot
# %matplotlib
 
# Adds static figures to notebook: good for printing
%matplotlib inline 
 
# Interactive windows inside notebook! Must include plt.figure() betwee
# %matplotlib notebook
 
# Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np 
import matplotlib.pyplot as plt

def f(x,mu):
    """
    Logistic map f(x) = 4 mu x (1-x), which folds the unit interval (0,
    into itself.
    """
    return 4*......



evolution laws together. This motivation does not directly apply here, because the logistic
map is not invertible, so it is not directly given by a Poincar'e section of a smooth differential
equation. (Remember the existence and uniqueness theorems from math class? The
invertibility follows from uniqueness.) ) The general stretching and folding exhibited by our
map is often seen in driven physical systems without conservation laws.

In this exercise, we will focus on values of  near one, where the motion is mostly chaotic.
Chaos is sometimes defined as motion where the final position depends sensitively on the
initial conditions. Two trajectories, starting a distance  apart, will typically drift apart in time
as , where  is the Lyapunov exponent for the chaotic dynamics.
Start with  and two nearby points  and  somewhere between zero and
one. Investigate the two trajectories  and .
How fast do they separate? Why do they stop separating? Estimate the Lyapunov exponent.
(Hint:  can be a few times the precision of the machine (around  for double-precision
arithmetic), so long as you are not near the maximum value of  at .)

𝜇

𝜖

𝜖𝑒𝜆𝑡 𝜆

𝜇 = 0.9 𝑥0 = + 𝜖𝑦0 𝑥0
, 𝑓( ), 𝑓(𝑓( )), . . . , ( )𝑥0 𝑥0 𝑥0 𝑓 [𝑛] 𝑥0 , 𝑓( ),…𝑦0 𝑦0

𝜖 10−17

𝑓 = 0.5𝑥0

In [ ]:

In [ ]:

Many Hamiltonian systems are also chaotic. Two configurations of classical atoms or billiard
balls, with initial positions and velocities that are almost identical, will rapidly diverge as the
collisions magnify small initial deviations in angle and velocity into large ones. It is this chaotic
stretching, folding, and kneading of phase space that is at the root of our explanation that
entropy increases.

mu = 0.9
x = 0.4
eps = 3.e-17
y = x + eps
fiter1 = [x]
fiter2 = [y]
for i in range(200):
    x = ...
    fiter1.append(x)
    y = ...
    ...
fiter1 = np.array(fiter1)
fiter2 = np.array(fiter2)
diff = fiter1-fiter2
diffPlot = plt.semilogy(fabs(...))

ts = np.arange(200)
lyapunov = ......
diffPlot = plt.semilogy(np.fabs(diff))
plt.semilogy(ts, eps*np.exp(......), 'r-');


