
Conformal invariance
(To be included in the next edition of Sethna, "Entropy, Order Parameters, and Complexity")

© 2017, James P. Sethna, all rights reserved.

The Ising model on a square lattice has an emergent rotation invariance as well as an
emergent scale invariance. The complex patterns of up and down spins look the same on
long length scales also when rotated by an angle. Indeed, making use of the symmetries
under changes of length scale, position, and angle (plus one spatially nonuniform
transformation), systems at their critical points have a conformal symmetry group.

In two dimensions, the conformal symmetry group becomes huge. Roughly speaking, any
complex analytic function takes a snapshot of an Ising model

 and warps it into a new magnetization pattern at that 'looks the same'. (Here
, , , and are all real.)

You may remember that most ordinary functions (like , , , , and)
are analytic, and all of them yield cool transformations of the Ising model -- weird and warped
when magnified until you see the pixels, but recognizably Ising-like on long scales.

(a) What analytic function shrinks a region uniformly by a factor , holding fixed? What
analytic function translates the lattice by a vector ? What analytic function
rotates a region by an angle ? Expanding , show that an analytic
function to linear order in is a rotation and dilation about followed by a translation. What
complex number gives the net translation?

In the renormalization group, we first coarse grain the system (shrinking by a factor) and
then rescale the magnetization (by some power) in order to return to statistically the
same critical state: . This rescaling turns the larger pixels more gray; a mostly
up-spin 'white' region with tiny pixels is mimicked by a large single pixel with the statistically
averaged gray color.

We can discover the correct power for by examining the rescaling of the correlation
function . In the Ising model at its critical point the correlation
function . In dimension , . We expect that the correlation
function for the conformally transformed magnetization will be the same as the original
correlation function.

(b) If we coarse-grain by a uniform factor , what power of of must we multiply by to
make ?

When our conformal transformation takes a pixel at to a warped pixel of area at
, it rescales the magnetization by . The pixel area for a

locally uniform compression by changes by . You may use this to check
your answer to part~(b).

𝑓(𝑧) = 𝑢(𝑥 + 𝑖𝑦) + 𝑖𝑣(𝑥 + 𝑖𝑦)

𝑀(𝑥, 𝑦) (𝑢, 𝑣)

𝑢 𝑣 𝑥 𝑦

𝑧2 𝑧
⎯⎯

√ sin(𝑧) log(𝑧) exp(𝑖𝑧)

𝑏 𝑧 = 0

= (,)𝑟0 𝑢0 𝑣0
𝜃 𝑓(𝑧 + 𝛿) = 𝑓(𝑧) + 𝛿∂𝑓/∂𝑧

𝑓 𝛿 𝑧

𝑏

𝑏𝑦𝑀

= 𝑀𝑀ˆ 𝑏𝑦𝑀

𝑀

𝐶(𝑟) = ⟨𝑀(𝑥)𝑀(𝑥 + 𝑟)⟩
𝐶(𝑟) ∼ 𝑟−(2−𝑑+𝜂) 𝑑 = 2 𝜂 = 1/4

𝑏 𝑏 𝑀

𝐶(𝑟) = ⟨ (𝑓(𝑧)) (𝑓(𝑧) + 𝑟)⟩𝑀ˆ 𝑀ˆ

𝑀(𝑧) 𝐴

𝑓(𝑧) (𝑓(𝑧)) = |𝐴 𝑀(𝑧)𝑀ˆ |−1/16

𝑏 |𝑑𝑓/𝑑𝑧 = 1/|2 𝑏2

Now we proceed to some computations. Load up the packages.

In []:

Now load a snapshot of the Ising model, replacing the directory shown with your local
directory and the filename with your image file. Transform the image into an array

In []:

'Transform' selects an L x L region from S, generates a list of spins and square polygons
covering the unit square in the complex plane, transforms the squares into quadrilaterals
under the map f(z), rescales the magnetization S according to the quadrilateral area by

, converts the quadrilaterals back into real coordinates, and returns the warped
polygons and rescaled magnetization.
𝐴−1/16

Sometimes gives interactive new windows
Must show() after plot, figure() before new plot
%matplotlib

Adds static figures to notebook: good for printing
#%matplotlib inline

Interactive windows inside notebook! Must include plt.figure() betwee
%matplotlib notebook

Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np
import matplotlib.pyplot as plt
from imageio import imread
from matplotlib.collections import PolyCollection
import warnings

Load image
#Simage = imread("Snapshots/Tc.png", as_gray=True)
Simage = imread("Snapshots/Tc2048.png", flatten=True)
Image is stored as gray scale (0,255). Ising uses down=0->-1, up=255-
S = 2*Simage/255 - 1
plt.figure()
plt.imshow(S, interpolation='nearest', cmap='gray',origin='lower')

In []:

GraphQuads plots the resulting magnetization pattern, given the function and the length.
Note that , for example, is singular at the grid point (0,0); GraphQuads and Transform
will send RuntimeWarning messages about such events. (We drop those infinite-area
polygons before we graph.)

𝑓(𝑧)

log(𝑧)

def Transform(S,f,L=None,**fkwargs):
 """Returns polygons and rescaled spins, given original spin lattice
 according to function f(z)"""

 # L is length of corner of lattice to be analyzed
 # Use small L to debug your code and also to explore by zooming,
 # before settling on final plots
 if L is None:
L = len(S)
 L = 512

 # Unpack L x L lower-right-hand corner of 2D spin array into 1D
 spins = S[:L,-L:].flatten()

 # Map lattice to complex plane (0,1] x (0,1]j.
 latticeCenters = (1./L)*np.array([(m+0.5)+1.j*(n+0.5) for n in rang

 # One pixel in the original complex lattice
 pixelExtent = (1./L)*np.array([-0.5-0.5j,-0.5+0.5j,0.5+0.5j,0.5-0.5

 # All the squares
 undeformedSquares = np.array([center+pixelExtent for center in latt

 # Distort quadrilaterals under f(z)
 # fkwargs passes optional constants like "b=0.25" to your function
 dQ = f(undeformedSquares,**fkwargs)

 # Find areas of quadrilaterals using the 'shoelace formula' for the
 areas = -0.5*np.sum(dQ*np.roll(dQ.conj(),1,axis=1),axis=1).imag

 # Drop spins whose quadrilaterals go to infinity, or which have neg
 # (which have a point in the interior at infinity, and should be 'f

 undroppedSpins = spins[np.isfinite(areas)&(areas>0.)]
 undroppedAreas = areas[np.isfinite(areas)&(areas>0.)]
 undroppedDQ = dQ[np.isfinite(areas)&(areas>0.)]

print("areas = ", undroppedAreas, "spins = ", undroppedSpins, "dQ

 # Rescale spins by corresponding areas
 rescaledSpins = undroppedAreas**(-1/16.)*undroppedSpins

 # Return to real coordinates
 quads = np.transpose(np.array([undroppedDQ.real,undroppedDQ.imag]),

 return quads, rescaledSpins

In []:

Suppress annoying warning messages with log(0) and such

In []:

For example, try with a small , to explore.𝑓(𝑧) = log(𝑧) 𝐿

In []:

Define your own function, like

def fexp(z): return np.exp(2.j * np.pi * z)

or

def fTwoProteins(z):
 u=-0.02
 w = np.exp(2*pi*z)
 return (w+u)/(u*w+1)

Zoom in to a square region. Find an interesting region; one with squares that vary in
orientation, and in length by at least a factor of two. (The region x=(-0.5,0.),y=(-0,0.5) for log
above is a bit too small.)

Run now for large , and save the whole plot and the zoomed plot to print and hand in.

(c) Discuss your zoomed plot critically - does it appear that the Ising correlations and visual
structures have been faithfully retained by your analytic transformation?

(d) Load an Ising model equilibrated at T=100, and at T=3, and a coarsened Ising model
quenched to low temperatures with a coarsening length of 4-5 pixels. Distort and zoom with
each. Are the correlations and visual structures retained away from the critical point?
(T100.png, T3.png, and Tcoarsening.png are available.)

(e) Invent a non-analytic function, and use it to distort your Ising model. (The author tried two
methods: inventing functions and , and using the real part of and the
imaginary part of .) Find an example that makes for an interesting picture. As above,
examine the latter critically - does it appear that the Ising correlations and visual structures
have been faithfully retained by your analytic transformation? Describe the distortions you
see. (Are the pixels still approximately square?)

𝐿

𝑢(𝑥, 𝑦) 𝑣(𝑥, 𝑦) 𝑓(𝑧)

𝑔(𝑧)

def GraphQuads(S,f,L=None,**fkwargs):
 quads, rescaledSpins = Transform(S,f,L,**fkwargs)
 fig, ax = plt.subplots()
 coll = PolyCollection(quads, array=rescaledSpins, cmap='gray', \
 edgecolors='none',antialiased=False)
 ax.add_collection(coll)
 ax.axis('scaled')
 plt.show()

warnings.filterwarnings("ignore", message="divide by zero encountered i
warnings.filterwarnings("ignore", message="invalid value encountered in

GraphQuads(S,np.log,64)

