
Fractal dimensions
(Sethna, "Entropy, Order Parameters, and Complexity", ex. 5.16)

© 2017, James Sethna, all rights reserved. This exercise was developed in collaboration with
Christopher Myers.

There are many strange sets that emerge in science. In statistical mechanics, such sets often
arise at continuous phase transitions, where self-similar spatial structures arise (Chapter 12).
In chaotic dynamical systems, the attractor (the set of points occupied at long times after the
transients have disappeared) is often a fractal (called a strange attractor). These sets are often
tenuous and jagged, with holes on all length scales, as in percolation (Fig. 1.2).

We often try to characterize these strange sets by a dimension. The dimensions of two
extremely different sets can be the same; the path exhibited by a random walk (embedded in
three or more dimensions) is arguably a two-dimensional set, but does not locally look like a
surface. However, if two sets have different spatial dimensions (measured in the same way)
they are certainly qualitatively different.

There is more than one way to define a dimension. Roughly speaking, strange sets are often
spatially inhomogeneous, and what dimension you measure depends upon how you weight
different regions of the set. In this exercise, we will calculate the information dimension
(closely connected to the non-equilibrium entropy), and the capacity dimension (originally
called the Hausdorff dimension}, also sometimes called the fractal dimension).

Import packages

In []:

To generate our strange set---along with some more ordinary sets---we will use the logistic
map

The attractor for the logistic map is a periodic orbit (dimension zero) at , and a
chaotic, cusped density filling two intervals (dimension one) at . (See the exercise
'Invariant measures'. The chaotic region for the logistic map does not have a strange attractor
because the map is confined to one dimension; period-doubling cascades for dynamical

𝑓(𝑥) = 4𝜇𝑥(1 − 𝑥).
𝜇 = 0.8

𝜇 = 0.9

Sometimes gives interactive new windows
Must show() after plot, figure() before new plot
%matplotlib

Adds static figures to notebook: good for printing
%matplotlib inline

Interactive windows inside notebook! Must include plt.figure() betwee
%matplotlib notebook

Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np
import matplotlib.pyplot as plt

systems in higher spatial dimensions have fractal, strange attractors in the chaotic region. At
the onset of chaos at (see the exercise 'Period doubling') the
dimension becomes intermediate between zero and one; this strange, self-similar set is called
the Feigenbaum attractor.

𝜇 = ≈ 0.892486418𝜇∞

In []:

Both the information dimension and the capacity dimension are defined in terms of the
occupation of cells of size in the limit as .

(a) Write a routine which, given and a set of bin sizes , does the following:

Iterates hundreds or thousands of times (to get onto the attractor).
Iterates a large number more times, collecting points on the attractor. (For

, you could just integrate times for fairly large.)
For each , use a histogram to calculate the probability that the points fall in the th
bin.
Return the set of vectors . You may wish to test your routine by using it for
(where the distribution should look like , see the exercise
'Invariant measures') and (where the distribution should look like two -
functions, each with half of the points).

𝑃𝑛 𝜖 𝜖 → 0

𝜇 𝜖

𝑓

𝑓 𝑁tot
𝜇 ≤ 𝜇∞ 2𝑛 𝑛

𝜖 𝑃𝑗 𝑗

[𝜖]𝑃𝑗 𝜇 = 1

𝜌(𝑥) = 1/𝜋 𝑥(1 − 𝑥)⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√
𝜇 = 0.8 𝛿

def f(x,mu):
 """
 Logistic map f(x) = 4 mu x (1-x), which folds the unit interval (0,
 into itself.
 """
 return 4*......

In []: def IterateList(x,mu,Niter=10,Nskip=0):
 """
 Iterate the function f(x,mu) Niter-1 times, starting at x
 (or at x iterated Nskip times), so that the full trajectory
 contains N points.
 Returns the entire list
 (x, f(x), f(f(x)), ... f(f(...(f(x))...)))....

 Can be used to explore the dynamics starting from an arbitrary poin
 x0, or to explore the attractor starting from a point x0 on the
 attractor (say, initialized using Nskip).

 For example, you can use Iterate to find a point xAttractor on the
 attractor and IterateList to create a long series of points attract
 (thousands, or even millions long, if you're in the chaotic region)
 and then use
 hist(attractorXs, bins=2000, normed=1)
 to see the density of points.
 """
 for i in range(Nskip):
 x = f(x,mu)
 fiter = [x]
 for i in range(Niter-1):
 x =
 fiter.append(x)
 return fiter

def GetPn(mu, epsilonList, Niter, Nskip=10000):
 """
 Generates probability arrays P_n[epsilon].
 Specifically,
 finds a point on the attractor by iterating Nskip times
 collects points on the attractor of size Niter
 for each epsilon in epsilonList,
 generates bins of size epsilon for the range (0,1) of the functio
 bins = np.arange(0.0,1.0+eps,eps)
 finds the number of points from the sample in each bin, using
 the histogram function
 numbers, bins = np.histogram(sample, bins=bins)
 and computes the probability P_n[epsilon] of being in each bin.
 In the period doubling region the sample should of size 2^n so that
 it covers the attractor evenly.
 """
 sample = IterateList(0.1, mu, Niter, Nskip)
 P_n = {}
 for eps in epsilonList:
 bins = np.arange(0.0, 1.0 + eps, eps)
 numbers, bins = np.histogram(sample, bins=bins)
 P_n[eps] = # Probability
 return P_n

Pn = GetPn(0.8,[0.001],10000)
plt.plot(Pn[0.001])
plt.figure()
Pn = GetPn(1.0,[0.001],10000)

The capacity dimension. The definition of the capacity dimension is motivated by the idea
that it takes at least

bins of size to cover a -dimensional set of volume . (Imagine covering the surface of a
sphere in 3D with tiny cubes; the number of cubes will go as the surface area (2D volume)
divided by .) By taking logs of both sides we find . The
capacity dimension is defined as the limit

but the convergence is slow (the error goes roughly as). Faster convergence is
given by calculating the slope of versus :

(b) Use your routine from part (a), write a routine to calculate by counting non-empty
bins. Plot from the fast convergence versus the midpoint .
Does it appear to extrapolate to for ?,% (In the chaotic regions, keep the
number of bins small compared to the number of iterates in your sample, or you will start
finding empty bins between points and eventually get a dimension of zero.) Does it appear to
extrapolate to for ? Plot these two curves together with the curve for .
Does the last one appear to converge to , the capacity dimension for the
Feigenbaum attractor gleaned from the literature? How small a deviation from does it take
to see the numerical cross-over to integer dimensions?

Entropy and the information dimension. The probability density
. Converting the non-equilibrium entropy formula to a sum

gives

(setting the conversion factor for convenience).

You might imagine that the entropy for a fixed-point would be zero, and the entropy for a
period- cycle would be . But this is incorrect; when there is a fixed-point or a
periodic limit cycle, the attractor is on a set of dimension zero (a bunch of points) rather than
dimension one. The entropy must go to minus infinity---since we have precise information
about where the trajectory sits at long times. To estimate the 'zero-dimensional' entropy

 on the computer, we would use the discrete form of the entropy summing over bins
 instead of integrating over :

= 𝑉 /𝑁cover 𝜖𝐷

𝜖𝐷 𝐷 𝑉

𝜖2 log ≈ log 𝑉 + 𝐷 log 𝜖𝑁cover

= ,𝐷capacity lim
𝜖→0

log𝑁cover

log 𝜖
log 𝑉 / log 𝜖

log𝑁 log 𝜖

𝐷capacity = lim
𝜖→0

𝑑log𝑁cover

𝑑log 𝜖

= .lim
𝜖→0

log − log𝑁𝑗+1 𝑁𝑗

log − log𝜖𝑖+1 𝜖𝑖

𝑁[𝜖]

𝐷capacity (1/2)(log + log)𝜖𝑖+1 𝜖𝑖
𝐷 = 1 𝜇 = 0.9

𝐷 = 0 𝜇 = 0.8 𝜇∞
≈ 0.538𝐷1

𝜇∞

𝜌() ≈ /𝜖 = (1/𝜖)(/)𝑥𝑗 𝑃𝑗 𝑁𝑗 𝑁tot

𝑆 = − ∫ 𝜌(𝑥) log(𝜌(𝑥)) 𝑑𝑥𝑘𝐵

≈ − log()𝜖∑
𝑗

𝑃𝑗

𝜖

𝑃𝑗

𝜖

= − log + log 𝜖∑
𝑗

𝑃𝑗 𝑃𝑗

= 1𝑘𝐵

𝑚 log𝑚𝑘𝐵

log𝑚𝑘𝐵
𝑃𝑗 𝑥

plt.plot(Pn[0.001])

More generally, the 'natural' measure of the entropy for a set with dimensions might be
defined as

Instead of using this formula to define the entropy, mathematicians use it to define the
information dimension

The information dimension agrees with the ordinary dimension for sets that locally look like
. It is different from the capacity dimension, which counts each occupied bin equally; the

information dimension counts heavily occupied parts (bins) in the attractor more heavily.
Again, we can speed up the convergence by noting that the equation for the information
dimension says that is a linear function of with slope and intercept .
Measuring the slope directly, we find

(c) As in part (b), write a routine that plots using the fast definition as a function of the
midpoint , as we increase the number of bins. Plot the curves for , , and

. Does the information dimension agree with the ordinary one for the first two? Does the
last one appear to converge to , the information dimension for the

= − log() = − log(𝜖).𝑆𝑑=0 ∑
𝑗

𝑃𝑗 𝑃𝑗 𝑆𝑑=1

𝐷

= − log() + 𝐷 log(𝜖).𝑆𝐷 ∑
𝑗

𝑃𝑗 𝑃𝑗

= (∑ log) / log(𝜖).𝐷inf lim
𝜖→0

𝑃𝑗 𝑃𝑗

ℝ
𝐷

log∑𝑗 𝑃𝑗 𝑃𝑗 log 𝜖 𝐷 𝑆𝐷

= .𝐷inf lim
𝜖→0

𝑑 (𝜖) log (𝜖)∑𝑗 𝑃𝑗 𝑃𝑗

𝑑log 𝜖

𝐷inf
log 𝜖 𝜇 = 0.9 𝜇 = 0.8

𝜇∞
≈ 0.517098𝐷1

In []: def DimensionEstimates(mu, epsilonList, Niter):
 """
 Estimates the capacity dimension and the information dimension
 for a sample of points on the line.
 The capacity dimension is defined as
 D_capacity = lim {eps->0} (- log(Nboxes) / log(eps))
 but converges faster as
 D_capacity = - (log(Nboxes[i+1])-log(Nboxes[i]))
 / (log(eps[i+1])-log(eps[i]))
 where Nboxes is the number of intervals of size eps needed to
 cover the space. The information dimension is defined as
 D_inf = lim {eps->0} sum(P_n log P_n) / log(eps)
 but converges faster as
 S0 = sum(P_n log P_n)
 D_inf = - (S0[i+1]-S0[i])
 / (log(eps[i+1])-log(eps[i]))
 where P_n is the fraction of the list 'sample' that is in bin n,
 and the bins are of size epsilon. You'll need to add a small
 increment delta to P_n before taking the log: delta = 1.e-100 will
 not change any of the non-zero elements, and P_n log (P_n + delta)
 will be zero if P_n is zero.

 Returns three lists, with epsilonBar (geometric mean of neighboring
 epsilonList values), and D_inf, and D_capacity values for each
 epsilonBar
 """
 D_inf = []
 D_capacity = []
 epsilonBar = []
 delta = 1.e-100 # Add to make log finite

 P_n = GetPn(mu, epsilonList, Niter)

 Nboxes = [] # Number of non-zero P_n
 S0 = [] # Zero-dimensional entropy -sum(P_n log(P_n))

 for eps in epsilonList:
 Nboxes.append(sum(P_n[eps] > 0))
 S0.append(-sum(...... * np.log(...... + delta)))

 epsBar = []
 D_capacity = []
 D_inf = []
 for i in range(len(epsilonList) - 1):
 epsi = epsilonList[i]
 epsiP1 = epsilonList[i + 1]
 epsBar.append(np.sqrt(epsiP1 * epsi))
 D_capacity_estimate = -......
 D_capacity.append(D_capacity_estimate)
 D_inf_estimate =
 D_inf.append(D_inf_estimate)

 return epsBar, D_capacity, D_inf

muInfinity = 0.892486418
def PlotDimensionEstimates(mu=muInfinity, Niter=2**18,
 epsilonList=2.0**np.arange(-4, -16, -1)):

In []:

Most 'real world' fractals have a whole spectrum of different characteristic spatial dimensions;
they are multifractal.

 epsBar, DCapacity, DInformation = DimensionEstimates(mu,epsilonList
 plt.figure()
 plt.semilogx(epsBar, DCapacity, label='Capacity dim')
 plt.semilogx(epsBar,, label='Info dim')
 plt.title('Fractal dimension estimates, mu = '+ str (mu))
 plt.ylabel('Dimension')
 plt.xlabel('Bin size')
 plt.legend(loc=3)

PlotDimensionEstimates(0.9)
PlotDimensionEstimates(0.8)
PlotDimensionEstimates(muInfinity)

