
GeneratingRandomWalksHintsPython

January 9, 2024

1 Generating random walks
(Sethna, “Entropy, Order Parameters, and Complexity”, ex. 2.5)

© 2016, James Sethna, all rights reserved.

Import packages

[]: %matplotlib inline
from matplotlib.pyplot import plot, figure, axes, hist
from numpy import *

One can efficiently generate and analyze random walks on the computer.

Write a routine RandomWalk(N,d) to generate an N-step random walk in d dimensions, with each
step uniformly distributed in [-1/2,1/2] in each dimension. (Generate the steps first as an 𝑁 × 𝑑
array, and then do a cumulative sum.)

[]: def RandomWalk(N, d):
"""
Use random.uniform(min, max, shape) to generate an array of steps of shape␣

↪(N,d),
and then use cumsum(..., axis=0) (which adds them up along the 'N' axis).
"""
steps = ...
walks = ...
return walks

Plot some one dimensional random walks versus step number, for N=10, 100, and 10000 steps.
Does multiplying the number of steps by 100 roughly increase the distance by 10?

[]: for i in range(10):
plot(RandomWalk(...,1));

figure()
for i in range(10):

plot(RandomWalk(...));
figure()
for i in range(10):

plot(RandomWalk(...));

1

Plot some two-dimensional random walks with N=10000 steps, setting axes(aspect=‘equal’) be-
forehand to make the x and y scales the same. (Your routine gives 𝑥, 𝑦 pairs, and you want 𝑥 and
𝑦 as arrays to plot, so you need to transpose.)

[]: axes(aspect='equal')
for i in range(10):

x, y = RandomWalk(...).transpose()
plot(x,y);

Each random walk is different and unpredictable, but the ensemble of random walks has elegent,
predictable properties.

Write a routine Endpoints(W, N, d) that just returns the endpoints of W random walks of N steps
each in d dimensions. (No need to use cumsum; just sum. If you generate a 3D array of size (W,
N, d), sum over axis=1 to sum over the N steps of each walk.

[]: def Endpoints(W, N, d):
steps = ...
return sum(..., axis=...)

Plot the endpoints of 10000 random walks of length 10. Then plot the endpoints of 10000 random
walks of length 1. Discuss how this illustrates an emergent symmetry

[]: axes(aspect='equal')
x, y = Endpoints(...).transpose()
plot(x,y,'.')
x, y = Endpoints(...).transpose()
plot(...)

The most useful property of random walks is described by the central limit theorem. The endpoints
of an ensemble of N-step random walks with RMS step-size 𝑎 has a Gaussian or normal distribution
as 𝑁 → ∞,

𝜌(𝑥) = 1√
2𝜋𝜎 exp(−𝑥2/(2𝜎2)),

with 𝜎 =
√

𝑁𝑎.

Calculate the RMS step-size 𝑎 for one-dimensional steps uniformly distributed in (-1/2, 1/2). Com-
pare the normalized histogram of 10000 endpoints with a normalized Gaussian of width 𝜎 predicted
above, for 𝑁 = 1, 2, and 5. How quickly does the Gaussian distribution become a good approxi-
mation for random walks?

[]: N = 1
hist(Endpoints(...), bins = 50, density=True);
sigma = sqrt(...)
x = arange(-3.*sigma, 3.*sigma, 0.1*sigma)
gauss = (1./...)*exp(...)
plot(x,gauss,'r');

2

[]: N = 2
...

[]: N = 5
...

3

	Generating random walks

