
HeisenbergEntanglementHintsPython

February 8, 2024

Heisenberg Entanglement

(Sethna, “Entropy, Order Parameters, and Complexity”, ex. XXX. Exercise developed in collabo-
ration with Jaron Kent-Dobias.)

© 2020, James Sethna, all rights reserved.

[]: # Sometimes gives interactive new windows
Must show() after plot, figure() before new plot
%matplotlib

Adds static figures to notebook: good for printing
%matplotlib inline

Interactive windows inside notebook! Must include plt.figure() between plots
%matplotlib notebook

Better than from numpy import *, but need np.sin(), np.array(), plt.plot(),␣
↪etc.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.linalg import eigh, logm
from scipy.optimize import curve_fit

Here we introduce the quantum Heisenberg antiferromagnet, and use it to explore how entropy,
temperature, and equilibration can emerge through the entanglement of two portions of a large
system – closely related to the eigenstate thermalization hypothesis. We saw in Entanglement of
two spins that ignoring part of a system can take a quantum pure state into a mixture of states on
the remaining subsystem; this should remind you of our derivation of the canonical ensemble from
a microcanonical system divided into subsystem and bath (Section 6.1, Fig. 6.1). This analogy
becomes much more powerful with a larger system, a one-dimensional chain of spin 1/2 particles.

The one-dimensional Heisenberg antiferromagnet has Hamiltonian

ℋ𝑁spins
=

𝑁spins−1

∑
𝑚=1

S𝑚 ⋅ S𝑚+1, (1)

where we have set the strength of the coupling 𝐽 to 1 – positive, and hence favoring antiparallel
spins. Here the quantum spins S = (𝜎𝑋, 𝜎𝑌 , 𝜎𝑍) have spin 1/2, and are written in terms of the

1

Pauli matrices
𝜎𝑥 = (0 1

1 0) 𝜎𝑦 = (0 −𝑖
𝑖 0) 𝜎𝑧 = (1 0

0 −1) (2)

Let us begin with an analytical calculation of the Hamiltonian and the eigenstates for 𝑁spins = 2,
considered already in Entanglement of two spins. We work in the four-dimensional 𝜎𝑧 basis

⎛⎜⎜⎜⎜
⎝

| ↑1⟩⟨↑2 |
| ↑1⟩⟨↓2 |
| ↓1⟩⟨↑2 |
| ↓1⟩⟨↓2 |

⎞⎟⎟⎟⎟
⎠

. (3)

(a) Show analytically that

ℋ2 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

. (4)

Find the eigenvalues and eigenstates for this Hamiltonian. Is the ground state the triplet or
the singlet? Does this make sense for an antiferromagnet? (Hint: The spin S1 commutes
with the kets | ↑2⟩ and | ↓2⟩ and vice-versa.)

Your answer here. LaTeX works (𝑒 = 𝑚𝑐2).

Implementing this calculation elegantly on the computer demands that we understand how the
single-spin 𝜎 operators and the dot product S𝑚 ⋅ S𝑚+1 act on the entire 2𝑁spins-dimensional Hilbert
space. The fact that they commute with the parts of the wavefunction involving other spins says
that they act as identity matrices on those parts of the Hilbert space. That is, 𝜎𝑥[1] for the first
spin needs to be promoted to 𝜎𝑥[1] ⊗ 𝐼2𝑁spins−1 , and 𝜎𝑥[2] for the second needs to be turned into
𝐼2 ⊗ 𝜎𝑥[1] ⊗ 𝐼2𝑁spins−2 , …

(b) Implement this numerically for the two-spin system. Calculate the Heisenberg Hamiltonian,
and verify the answer of part (a). (Hint: Many modern programming languages have support
for tensor data structures. These efficient routines will be important in later steps, so use
them here.)

[]: # Pauli matrices
sigmaX = ...
sigmaY = np.array([[0,-1j],[1j,0]])
sigmaZ = ...

One subtle point. In combining an operator 𝐿𝑖𝑗 acting on subsystem 𝐴 with 𝑀𝛼𝛽 acting on
subsystem 𝐵, we want an operator 𝑂 which labels rows using 𝑖𝛼 and columns with 𝑗𝛽 𝑂𝑖𝛼 𝑗𝛽.
We can then use 𝑂 as a two-index matrix to compute eigenvectors and eigenvalues. In some
implementations, this demands that we swap the two inner axes of the naive product 𝐿𝑖𝑗𝑀𝛼𝛽.

[]: def TensorProduct(L,M):
"""Gives tensor product of two matrices L_ij M_ab, as matrix O_(ia)(jb).

Needs to swap axes."""
totalSize = len(L)*len(M)
return np.einsum("ij,ab->iajb",L,M).reshape(totalSize,totalSize)

2

[]: def sigmaOfn(sigma,n):
"""Tensor product Pauli matrix with identity matrix

to act on spin n=1,2 of two spin Hilbert space"""
if n==0:

sigma = TensorProduct(sigma,np.identity(2))
elif n==1:

sigma = TensorProduct(np.identity(2),sigma)
return sigma

h2 = np.dot(sigmaOfn(sigmaX,0),...) + np.dot(...) + ...

print("h2 =\n", h2, "\n")

Heisenberg2 = np.array([[1,0,0,0],[0,-1,2,0],[0,2,-1,0],[0,0,0,1]])

print("Heisenberg2 =\n", Heisenberg2)

In this exercise, we shall discuss how pure energy eigenstates states in a system 𝐴𝐵 become mixed
states when we split the system into a subsystem 𝐴 and a bath 𝐵, and study the properties of these
mixed states. We shall index operators acting on the subsystem 𝐴 with Latin letters 𝑖, 𝑗, operators
on the bath 𝐵 with Greek letters 𝛼, 𝛽, and operators on the total system 𝐴𝐵 with capital letters
𝐼 , 𝐽 , or sometimes with pairs of indices 𝑖𝛼, 𝑗𝛽.

(c) If 𝜌𝑖𝛼,𝑗𝛽 is the density matrix for the whole system 𝐴𝐵, show analytically that the sum
∑𝛼 𝜌𝑖𝛼𝑗𝛼 gives the reduced density matrix for the subsystem (e.g., as defined in ‘Entanglement
of two spins’).

Your answer here.

We can use the two-spin problem of part (a) to preview the rest of the exercise, in a context where
you know the answer from Entanglement of two spins. Here we view the first spin as the the
‘subsystem’ 𝐴, and the second spin as the ‘bath’ 𝐵.

(d) Select the singlet eigenstate, and normalize it if necessary. Generate the pure-state density
matrix, and reshape it into the four index tensor 𝜌𝑖𝛼,𝑗𝛽. Trace over the bath as in part (c),
and verify that the reduced density matrix 𝜌𝐴

𝑖𝑗 describes an unpolarized spin. Calculate the
entropy by taking the suitable matrix trace.

In python, the eigenvalue routine returns the eigenvectors as the columns of the array. We want
the rows, so we must take the transpose.

[]: vals, vecsTranspose = eigh(Heisenberg2)
vecs = np.transpose(vecsTranspose)
print(vals)
print(vecs)

[]: singlet = vecs[...]
singlet

3

[]: print("Singlet state")
rhoPure = np.einsum("i,j->ij",singlet, np.conj(singlet))
print("rhoPure =\n",rhoPure)
rhoDoubleIndex = rhoPure.reshape(2,2,2,2)
print("\n rhoDoubleIndex =\n", rhoDoubleIndex)
rhoA = np.einsum('iaja',rhoDoubleIndex)
print("\n rhoA =\n", rhoA)
SA = -np.trace(np.dot(rhoA,logm(rhoA)))
print("\n SA =", SA, "=?",np.log(2.))

To generate the Heisenberg Hamiltonian for multiple spins, we can save steps by noting that we
already know the Hamiltonian for two spins from part (a). So the term S𝑚 ⋅S𝑚+1 in our Heisenberg
Hamiltonian becomes

𝐼2𝑚−1 ⊗ ℋ2 ⊗ 𝐼2𝑁spins−(𝑚+1) (5)

(e) Use this to write a function that returns the Heisenberg Hamiltonian ℋ𝑁spins
as a 2𝑁spins ×

2𝑁spins matrix. Check, for 𝑁spins = 2 it returns ℋ2 from part (a). Check also for 𝑁spins = 3
its eigenvalues are (−4, −4, 2, 2, 2, 2, 0, 0), and for 𝑁spins = 4 that its distinct eigenvalues are
{−3 − 2

√
3, −1 − 2

√
2, 3, −1 + 2

√
2, −1, −3 + 2

√
3} ≈ {−6.46, −3.8, 3, 1.8, −1, 0.46}.

In the 𝐶 and Python convention where indices start with zero, we should use 𝐼2𝑚 ⊗ℋ2⊗𝐼2𝑁spins−(𝑚+2) .

[]: def Heisenberg(nS):
Ham = TensorProduct(Heisenberg2,np.identity(2**(nS-2)))
for m in range(1,nS-1):

Ham = Ham + TensorProduct(TensorProduct(np.identity(...,Heisenberg2),
np.identity(2**(...)))

return Ham
print(Heisenberg(2))

[]: np.set_printoptions(precision=3,suppress=True)
print(eigh(Heisenberg(3))[0])
print(eigh(Heisenberg(4))[0])

We shall work with a system of 𝑁spins = 𝑁𝐴𝐵 = 10 spins in the chain; we shall primarily study
a subsystem with 𝑁𝐴 = 4 spins, so the bath has 𝑁𝐵 = 𝑁𝐴𝐵 − 𝑁𝐴 = 6 spins. We shall use
an eigenstate 𝜓 of ℋ𝑁𝐴𝐵

to calculate the reduced density matrix 𝜌𝐴 for 𝑁𝐴, to investigate the
entanglement between 𝐴 and the bath 𝐵, to calculate the entanglement entropy, and to illustrate
eigenstate thermalization. For the latter, we want an energy that is lower than average, but not
near zero.

(f) Create ℋ𝐴𝐵 = ℋ10. Find its energy eigenvalues and eigenstates, and (if necessary) sort
them in increasing order of their energy. Pick the energy eigenstate 𝜓 of the full system that
is 1/4 the way from the bottom (the 𝐾 = 2𝑁𝐴𝐵−3 entry). Calculate the pure density matrix
𝜌pure, reshape it into the four index tensor 𝜌AB

𝑖𝛼,𝑗𝛽, and trace over the bath to give the reduced
density matrix 𝜌𝐴

𝑖𝑗. Check that 𝜌𝐴 has trace one (as it must), and calculate 𝑇 𝑟[(𝜌𝐴)2]. Is it
is a mixed state?

In python, the eigenvalue routine returns the eigenvectors as the columns of the array. We want

4

the rows, so we must take the transpose.

[]: nAB = 10;
HamAB = Heisenberg(nAB);
EABs, eigvecsTranspose = eigh(HamAB)
psiABs = eigvecsTranspose.transpose()
K=...
psiK = psiABs[K]
EK = EABs[...]

nA = 4
rhoPure = np.einsum("i,j->ij",...,np.conj(psiK))
rhoAB = rhoPure.reshape(2**nA,2**(nAB-nA),2**nA,2**(nAB-nA))
rhoA = np.einsum(...,rhoAB)

print("Trace rhoA", np.trace(rhoA))
print("Trace rhoA^2", np.trace(np.dot(rhoA,rhoA)))

The entanglement entropy between 𝐴 and 𝐵 for a pure state 𝜓 of 𝐴𝐵 is the entropy of the reduced
density matrix of 𝐴.

(g) Calculate the entanglement entropy 𝑆 = −𝑇 𝑟𝜌𝐴 log 𝜌𝐴. Check that it has the same entropy
as subsystem 𝐵. Write a loop over 𝑁𝐴 ranging through all values from zero to 𝑁𝐴𝐵, and plot
𝑆 as a function of 𝑁𝐴 for our particular eigenstate 𝜓. Where is the entanglement entropy
largest? Explain why it goes to zero for the two endpoints.

[]: SA = ...
print("SA = ", SA)
rhoB = np.einsum(...,rhoAB)
SB = ...
print("SB = ", SB)

[]: rhos = [rhoPure.reshape(2**nA,2**(nAB-nA),2**nA,2**(nAB-nA)) for nA in␣
↪range(0,nAB+1)];

rhoAs = [np.einsum('iaja', rho) for rho in rhos]
SAs = [... for rhoA in rhoAs]
plt.plot(np.arange(0,nAB+1),np.real(SAs),"bo-")

The term ‘entanglement’ is mutual; 𝐴 and 𝐵 are entangled, rather than 𝐵 has somehow perturbed
𝐴. This is not an accident. As you checked numerically, the entanglement entropies of the two sub-
systems should be the same. (This can be shown using the Schmidt decomposition – an application
of singular value decomposition to density matrices in quantum mechanics).

In statistical mechanics, a large system 𝐴𝐵 in the microcanonical ensemble at energy 𝐸 will, when
restricted to a relatively small subsystem 𝐴, generate an equilibrium thermal ensemble at the
corresponding temperature. The eigenstate thermalization hypothesis argues that many quantum
systems this to an extreme: for any eigenstate 𝜓 with energy 𝐸, the reduced density matrix 𝜌𝐴 of

5

the subsystem will converge to a Boltzmann equilibrium thermal ensemble

𝜌�
𝑗𝑘 = 𝛿𝑗𝑘𝑒−𝛽𝐸𝐴

𝑘 / ∑
ℓ

𝑒−𝛽𝐸𝐴
ℓ (6)

as the system size goes to infinity.

Let us calculate the probability 𝑝𝑘 that our subsystem is in eigenstate 𝜓𝐴
𝑘 , 𝑝𝑘 = 𝑇 𝑟(|𝜓𝐴

𝑘 ⟩⟨𝜓𝐴
𝑘 | 𝜌𝐴).

We are simulating a rather small system, so fluctuations will be large.

(h) Make a log plot of 𝑝𝑘 vs. 𝐸𝐴
𝑘 . Do a nonlinear fit to the predicted form above to find 𝛽, and

plot the result with your data.

[]: HamA=Heisenberg(nA)
EAs, psiAsTranspose =eigh(HamA)
psiAs = np.transpose(psiAsTranspose)
psiKetBras = [np.einsum("i,j->ij",...,np.conj(psiA)) for psiA in psiAs]
ps = [np.trace(np.dot(psiKetBra,...)) for psiKetBra in psiKetBras]
fig = plt.plot(EAs,ps,'bo')
plt.yscale('log')
def BoltzmannProb(E,A,beta):

return A*np.exp(-beta*E)
A0, beta0 = curve_fit(BoltzmannProb,EAs,ps)[0]
plt.plot(EAs, BoltzmannProb(EAs, A0, beta0))
print(beta0)

In particular, the reduced density matrix is predicted to be at the temperature of the microcanonical
ensemble at the energy 𝐸 of the original pure state 𝜓.

(i) Write a function 𝐸𝑏𝑎𝑟𝐴𝐵(𝛽) returning the average energy of the entire system as a function
of 𝛽. Take a sampling of eigenstates 𝜓𝐾 of the total system, fit 𝑝𝑘 vs 𝐸𝐴

𝑘 as in part(h), and
plot 𝛽 vs. E along with your prediction 𝛽(𝐸𝑏𝑎𝑟𝐴𝐵). Do you achieve a rough agreement?

We suggest starting with only a few points, spread over the interval. For example, points starting
at 𝐾 = 32 and separated by Δ𝐾 = 64 will span the range avoiding the endpoints.

[]: def beta(psi):
"""
Returns best fit beta for reduced density matrix
corresponding to the Kth eigenstate of the system
"""
rho = np.einsum("i,j->ij",psi,np.conj(psi)).

↪reshape(2**nA,2**(nAB-nA),2**nA,2**(nAB-nA))
rhoA = np.einsum('iaja',rho)
ps = [np.trace(np.dot(psiKetBra,rhoA)) for psiKetBra in psiKetBras]
A0, beta0 = curve_fit(BoltzmannProb,EAs,ps, maxfev=50000)[0]
return beta0

Kmin = 2**(nAB-5)
Ks = np.arange(Kmin,2**nAB,2*Kmin)
betas = [beta(psiABs[K]) for K in Ks]

6

Es = EABs[Ks]

[]: plt.plot(Es,betas,"bo")
plt.ylim(-2,2)

[]: def EbarAB(beta):
Z = sum(np.exp(-beta*EABs))
return sum(... * ...)/Z

plt.plot(Es, betas, "bo")
betasTheory = np.arange(-2,1.5,0.01)
EbarsTheory = [EbarAB(beta) for beta in betasTheory]
plt.plot(EbarsTheory,betasTheory,"r")
plt.ylim(-2,2)

7

