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Liouville’s theorem tells us that all available points in phase space are equally weighted when a Hamilto-
nian system is averaged over all times. What happens for systems that evolve according to laws that 
are not Hamiltonian? Usually, the system does not continue to explore all points in its state space; at 
long times it is confined to a subset of the original space known as the attractor.

We consider the behavior of the `logistic’ mapping from the unit interval (0,1) into itself:
f(x)=4μx(1-x).
(We also study this map in the exercises “Chaos, Lyapunov, and entropy increase”, “Fractal Dimen-
sions”, and “Period doubling”). We talk of the trajectory of an initial point x0 as the sequence of points 
x0, f(x0), f(f(x0)), \dots, f[n](x0), ... Iteration can be thought of as a time step (one iteration of a Poincare 

return map of the exercise “Jupiter” or one step Δt in a time-step algorithm.

f[x_, μ_] := 4 ...

Attracting fixed point. For small μ, our mapping has an attracting fixed-point. A fixed-point of a mapping 

is a value x*=f(x*); a fixed-point is stable if small perturbations shrink after iterating:
|f(x*+ϵ)-x*|≈|f ‘(x*)|ϵ<ϵ,
which happens if the derivative |f ’(x�)|<1. (For many-dimensional mappings, a sufficient criterion for 
stability is that all the eigenvalues of the Jacobian have magnitude smaller than one. A continuous time 

evolution dy/dt=F(y) will be stable if dF/dy is smaller than zero, or (for multidimensional systems) if the 

Jacobian DF has eigenvalues whose real parts are all less than zero.)

(a) Iteration. Set μ=0.2; iterate f for some initial points 0<x0<1 of your choosing, and convince yourself 
that they are all attracted to zero. Plot f and the diagonal y=x on the same plot. Are there any fixed-
points other than x=0? Repeat for μ=0.4, and 0.6. What happens? than zero.)

(* NestList iterates f(#,μ)& and returns a list of the values

f#,0.2& is the one-

variable 'pure function' corresponding to f(x,μ) where μ=0.2 *)

NestList[f[#, ... &, ...]

Plot[{f[x, 0.2], ..., x}, {x, 0, 1},
AspectRatio → 1, PlotLegends → LineLegend["Expressions"]]

(b) Analytics. Find the non-zero fixed-point x*(μ) of the map f(x), and show that it exists and is stable for 
1/4<μ<3/4. If you are ambitious or have a computer algebra program, show that there is a stable, period-

two cycle for 3/4 < μ < (1+ 6 )/4.

xStarSols = Solve[ ..., x]
xStar = x /. xStarSols[ ...] // Expand
(* Stability if f'[x] <1 *)

dfAtxStar = D[ ...] /. x → xStar // Expand
Solve[dfAtxStar ⩵ -1, μ]



x2StarSols = Solve[f[f[ ...] ...] ⩵ x, x] // Expand
x2Star =. ..
df2Atx2Star = D[ ..., x] /. x → x2Star // Expand
Solve[df2Atx2Star ⩵ -1, μ]

An attracting fixed-point is the antithesis of Liouville’s theorem; all initial conditions are transient except 
one, and all systems lead eventually to the same, time-independent state. (On the other hand, this is 
precisely the behavior we expect in statistical mechanics on the macroscopic scale; the system settles 
down into a time-independent equilibrium state! All microstates are equivalent, but the vast majority of 
accessible microstates have the same macroscopic behavior in most large systems.) We could define a 

rather trivial `equilibrium ensemble’ for this system, which consists of the single point x*; any property 
O(x) will have the long-time average��O�=O(x*).

For larger values of μ, more complicated things happen. At μ=1, the dynamics can be shown to fill the 

entire interval; the dynamics is ergodic, and the attractor fills the entire set of available states. However, 
unlike the case of Hamiltonian systems, not all states are weighted equally (i.e., Liouville’s theorem 

does not hold).

We can find time averages for functions of x in two ways: by averaging over time (many iterates of the 

map) or by weighting an integral over x by the invariant density ρ(x). The invariant density ρ(x)dx is the 

probability that a point on a long trajectory will lie between x and x+dx. To find it numerically, we iterate 

a typical point (not an unstable fixed-point or unstable periodic orbit!) x0 a thousand or so times 
(Ntransient) to find a point x a on the attractor, and then collect a long trajectory of perhaps a million 

points (Ncycles). A histogram of this trajectory gives ρ(x). Averaging over this density is manifestly the 

same as a time average over the trajectory of a million points. We call ρ(x) invariant because it is left the 

same under the mapping f; iterating our million-point approximation for ρ once under f only removes the 

first point x a and adds one extra point to the end.

(b) Invariant density. Set μ=1; iterate f many times, and form a histogram of values giving the density 
ρ(x) of points along the trajectory. You should find that points x near the boundaries are approached 

more often than points near the center.

Analytics. Using the fact that the long-time average ρ(x) must be independent of time, verify for μ=1 that 
the density of points is

                ρ(x)= 1

π (1-x) x
.

(You need not derive the factor 1/π, which normalizes the probability density to one.) Plot this theoreti-
cal curve with your numerical histogram. (Hint: The points in a range dx around a point x map under f to 

a range dy=f ’(x)dx around the image y=f(x). Each iteration maps two points x a and x b = 1-x a to y, 
and thus maps all the density ρ(x a)|dx a| and ρ(x b)|dx b| into dy. Hence the probability ρ(y)dy must 
equal ρ(x a)|dx a|+ρ(x b)|dx b|, so
                  ρ(f(x a))=ρ(x a)/|f ’(x a)|+ρ(x b)/|f ‘(x b)|.
Substitute the second-to-latest equation for ρ(x) above into this equation. You will need to factor a 

polynomial.)
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xa = Nest[ ...];
xs = NestList[ ...];
hist = Histogram[xs, 2000, "PDF"]
plot = Plot[ ..., {x, 0, 1}];
Show[hist, plot]

Mathematicians call this probability density ρ(x)dx the invariant measure on the attractor. (There are 

actually many possible invariant measures on some attractors; this one is the SRB measure (John 

Guckenheimer, private communication).) To get the long-term average of any function O(x), one can use

                 ��O�=∫O(x)ρ(x)dx.
To a mathematician, a measure is a way of weighting different regions when calculating integrals---
precisely our ρ(x)dx. Notice that, for the case of an attracting fixed-point, we would have ρ(x)=δ(x-x*). 
(The case of a fixed-point then becomes mathematically a measure with a point mass at x*.)

Cusps in the invariant density. At values of μ slightly smaller than one, our mapping has a rather com-
plex invariant density.

(c) Find the invariant density (as described above) for μ=0.9. Make your trajectory length Ncycles big 

enough and the bin size small enough to see the interesting structures. Notice that the attractor no 

longer fills the whole range (0,1); locate roughly where the edges are. Notice also the cusps in ρ(x) at 
the edges of the attractor, and also at places inside the attractor (called ‘boundaries’). Locate some of 
the more prominent cusps.

xa = Nest[ ...];
xs = NestList[ ...];
hist09 = Histogram[xs, 2000, "PDF"]

Analytics of cusps. Notice that f ’(1/2)=0, so by the equation for ρ(f(xa)) above we know that ρ(f(x))≥
ρ(x)/|f ‘(x)| must have a singularity near x=1/2; all the points near x=1/2 are squeezed together and 

folded to one side by f. Further iterates of this singularity produce more cusps; the crease after one fold 

stays a crease after being further stretched and kneaded.

(d) Set μ=0.9. Calculate f(1/2), f(f(1/2)), ... and compare these iterates to the locations of the edges and 

cusps from part~(c). (You may wish to include them both on the same plot.)

cusps = ListPlot[Table[{Nest[ ..., ..., n], n}, {n, 1, 8}], Joined → True]
Show[hist09, cusps]

Bifurcation diagram. The evolution of the attractor and its invariant density as μ varies are plotted in the 

bifurcation diagram. One of the striking features in this plot are the sharp boundaries formed by the 

cusps.

(e) Bifurcation diagram. Plot the attractor as a function of μ, for 0.9<μ<1. (Pick regularly-spaced δμ, run 

ntransient steps, record ncycles steps, and plot. After the routine is working, you should be able to push 

ntransient and ncycles both larger than 100, and δμ<0.01.)

On the same plot, for the same μs, plot the first eight images of x=1/2, that is, f(1/2),f(f(1/2)),.... Are the 
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boundaries you see just the cusps? What happens in the bifurcation diagram when two boundaries 
touch?

points[μ_, ntransient_: 100, ncycles_: 512] :=
Block[{xa = ..., mus = Table[μ, {n, 1, ncycles}]},
Transpose[{mus, NestList[ ...]}]]

BifurcationDiagram = ListPlot[Flatten[Table[points[μ], {μ, ...}], 1]];
cusps = Flatten[Table[{μ, Nest[f[#, μ] &, 0.5, n]}, {n, 1, 8}, {μ, 0 ...}], 1];
cuspDiagram = ListPlot[cusps, PlotStyle → Red];
Show[BifurcationDiagram, cuspDiagram]
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