
Anderson localization
In Section 7.4, we discussed how non-interacting electrons provide a useful model for metals, even 

though the electron-electron interactions are strong. The Fermi liquid of quasiparticles is a kind of 
adiabatic continuation of the noninteracting electron system, connected by perturbation theory. Here 

we shall study how a one-dimensional non-interacting metal responds to disorder.  We shall discuss 

how metals with weak disorder are understood by perturbing around the clean state.  We shall discover 
that strong disorder leads to an insulating system whose eigenstates  are not extended, but localized. 
We will describe these localized states  explicitly by perturbing about a state  of isolated atomic states.

Consider a one--dimensional chain of atoms n, each with one noninteracting electron state  |n>
 of energy Un, that can be occupied by either zero or one spinless electrons. Electrons can hop between 

atoms with matrix element t, leading to a Hamiltonian with Un along the diagonal,  -t in the elements 

Hi,i+1 and Hi,i-1  immediately above and below the diagonal, and zero elsewhere.

We shall take the random energies  Un as uniformly distributed between -W and W.

Without disorder (W=0), this is a textbook model used to describe energy bands in crystals. Three 

dimensional analogs of this ‘tight-binding’ model are quite realistic models of Fermi surfaces and 

energy bands in real materials.

(We shall see that even a small disorder changes the metallic behavior of one-dimensional electrons in 

a qualitative and interesting way. Indeed, one dimensional electrons are unstable in many interesting 

ways. Adding interactions between electrons, they become Luttinger liquids, with emergent scale 

invariance. Adding interactions with lattice vibrations, they can become topological insulators, with 

solitons and fractional charges.)

(a) Write a function that builds the Hamiltonian matrix above with size N, bandwidth 2W, and hopping 

matrix element t. Studying zero disorder W=0, find the eigenvectors for t=1, and N=100, sorted by their 
eigenvalues. Plot the eigenvectors for the four lowest energies. Check numerically that these four are 

sinusoidal with wavevectors kα =πα / (N + 1) appropriate for a box of size N with hard-wall boundary 

conditions half a grid spacing to either side. Check that their four eigenvalues are the corresponding  

Ek_α = -2 t cos(kα).

Ham1D[W_, t_, N_] :=
Table[If[i  j, RandomReal[{- ..., ...}], If[ ..., -t, 0]], {i, 1, N}, {j, ...}]

(* Mathematica sorts by absolute value; need sort by value *)

EigensystemSorted[Ham_] := Block[{unsorted = Eigensystem[Ham]},
Transpose[SortBy[Transpose[unsorted], unsorted〚1〛]]]



ham = Ham1D[ ...];
{vals, vecs} = EigensystemSorted[ham];
plotVecs = ListPlot[Table[vecs〚 ...〛, {m, 1, 4}], Joined  True]
k[α_] := ...
(* Eigenvalue comparison *)

Table[{vals〚α〛, ...}, {α, 1, 4}]
(* Shift theory curves by eps *)

eps = 0.005;
plotWFs = Plot[Table[ ... + eps, {α, 1, 4}], {n, 0, 100}, PlotStyle  Black];
Show[plotWFs, plotVecs]

Imagine a 1D metal at zero temperatures  with electrons filling the states  up to a Fermi surface, here 

just two points at some +-kFermi. Consider a packet of electrons made up of eigenstates  near kFermi 
traveling to the right. The wavepacket will travel, as usual, at the group velocity dE/dk at kFermi,  with-
out dissipation.

(Wavepackets are used to connect waves to particle-like motion. In a non-disordered system, one 

superimposes states  with similar momenta to make a spatially localized wavefunction, which then 

moves with the group velocity of the wave. We discuss wavepackets to motivate  the effects of disorder,  
but no knowledge about them is required to do this exercise.)

Now let us explore what happens when we add a weak disorder.

(b) Build a Hamiltonian with weak disorder W = Wweak=0.04, t=1, and N=100. Plot the lowest four eigen-
vectors. Are the eigenstates  still extensive (reaching from one side of the box to the other)?

Wweak =. ..;
{vals, vecs} = ...; plotVecs = ...

Answer: Extensive?

At this point, we could use perturbation theory to calculate the disordered eigenstates  and energy 

levels. We could then create wavepackets and see how they evolve. In three dimensions, the scattering 

off of the disorder changes the electron transport qualitatively.  Instead of wavepackets moving forever 
in one direction (ballistic transport, infinite conductivity), one gets diffusive motion of the electron 

probability through space (disorder providing an elastic scattering length, and a finite conductivity). In 

three dimensions, this is a good model for metals with impurities or dopants, illustrating how one can 

understand complex behavior by perturbing around solvable special cases.

Instead, let us examine what happens at large disorder W, or equivalently, small hopping t. (All of our 
eigenvectors depend only on W/t, and we will perturb in t to study the localized states.)

(c) Set  t = tweak = 0.1, W=1, and N=100, plotting the ten eigenvectors with lowest energies. Also do a log-
linear plot of the probability density (absolute square of the wavefunctions) for these eigenvectors. Do 
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the eigenstates  still look as if the will be extensive (stretching from one end of a macroscopic wire to 

the other)? What solvable special limit of  the Hamiltonian should we use to capture this new behavior?

tWeak = 0.1;
ham = ...
{vals, vecs} = ...;
ListPlot[ ...]

ListLogPlot[Table[vecs〚m〛^2, ..., PlotRange  {10^-4, 1}]

Answer?

Here we find the eigenstates  appear localized - fixed in space near individual ‘atoms’.  The probabilities 

in these states  fall exponentially with distance  from their centers. A wavepacket formed from localized 

states  like these cannot transport current: for large disorder,  our model describes an insulator.

Just as one can use perturbation theory to describe dirty metals in three dimensions from models like 

ours, we can use perturbation theory to calculate and understand these localized states.  You should 

remember the use of second-order perturbation theory to describe the energies of a Hamiltonian 

H =H0 + V  for small V.  You may not remember that the first step was to use first-order perturbation 

theory to determine the eigenvectors. If ψi
0 > has unperturbed eigenvalue  Ei

0, then to first order

                     ψi
1 > = ψi

0 > + Σi≠j <ψj
0 V ψi

0 > /(Ei
0 - Ej

0
 )  ψj

0 >.

 

If the hopping is small compared to the disorder,  let us perturb in t.

(d) What are the eigenenergies for our Hamiltonian H0in the equation above with t=0? Argue that, to 

first order in t, the new eigenstates  will be confined to three adjacent sites.

Answer?

(e) Write a function, given H, i, t, and N, that gives the perturbed eigenstate  to lowest order in that is 

centered at site i. Find the site of the ground state  with largest probability. Plot the ground state  and 

your first-order approximation to it. (Hint: You may be unlucky, and happen to have a neighbor site 

with a near degenerate  energy. Just create a new Hamiltonian and try again.)

PerturbedEigenstate[ham_, i_, t_, N_] :=
Table[If[i  j, ..., If[Abs[i - j]  1, ..., 0]], {j, 1, N}]

(* Find center of lowest energy state *)

(* The sign of the wavefunction is arbitrary. You may need to flip one. *)

iGround = Position[vecs〚1〛^2, Max[vecs〚1〛^2]]〚1〛〚1〛;
ListPlot[{vecs〚1〛, -PerturbedEigenstate[ ...]},
PlotRange  {{iGround - 3, iGround + 3}, All}, Joined  True]

What controls whether our model is a metal or an insulator? For a given W/t, are all the states  either 
extended or all localized? Or could there be some mixture?
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We can examine this by defining a rough measure of how spread out the wavefunction is, called the 

participation ratio: P(ψ) = 1/(Σ |ψ(n)|^4).

(f) Show that a state  whose probability is spread uniformly among Msites has P=M. At zero disorder,  
what is the participation ratio for the lowest energy state?  For the long-wavelength next few states?  

What is the ratio for a localized state  that decays exponentially, ψ(j) ~ exp(-|i-j|/λ), in an infinite chain, 
with λ much larger than one?

Answer?

If the participation ratio P<<N, we can reasonably expect that the eigenstate  is localized.

(g) Calculate the participation ratio for all the eigenstates  for intermediate disorder 
Winter = 0.5, t = 1, N = 100, and plot them against the energy. Is there a systematic variation? Plot the 

wavefunction for an energy in the middle of the band (eigenvalue E near zero), and one at the top and 

bottom of the band. Which are less localized - the states  near the edges of the band, or the states  in the 

center?

ParticipationRatio[ψ_] := ...

n = 100;
ham = ...;
{vals, vecs} = ...;
ParticipationRatios = Table[ParticipationRatio[ ...], { ...}];
ListPlot[Transpose[{vals, ...}]]
ListPlot[vecs〚n / 2〛, Joined  True, PlotRange  All]
ListPlot[ ...]
ListPlot[ ...]

Answer?

In experiments, one finds a region of localized states  at the edges of a band, and extended states  in the 

middle of the band. Between these is a mobility edge, where a metal-insulator transition occurs as 

more electrons are added.

(Each time we add one order to perturbation theory, we get a wavefunction extending outward by one 

atom, and the wavefunction shrinks (to lowest order in t) by a factor |ψ(i+n)/ψ(i+(n-1))| = | t/ (Ui - Ui+n) .   
Roughly speaking, if Ui  is at the edge of the band, this factor is twice as small as ifUi is in the center,  so 

there is less localization at the center.  Notice, though, that this is useful only when t>|Ui - Ui+n |. Rare, 
nearly degenerate  states  can mix strongly,  even at long distances,  making the arguments subtle.)

Finally, can we find a mobility edge for our model? One thing to check is if the wavefunctions might 
have decay lengths larger than our system (so they look extended at N=100).

(h) Find the eigenvectors and eigenvalues for the same parameters  as in part (g), Winter = 0.5 and t = 1, 
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except  for a much larger system (N=2000 or 4000 if it is feasible on your system). Plot the participation 

ratio verses energy, and plot eigenstate  in the center of the band and at the two edges. Do the states  in 

the middle of the band now appear localized? Are their participation ratios larger than 100 - the system 

size in part~(g)? Does it make sense that they looked extended in the smaller system, but clearly in an 

infinite system are localized?

n = 4000;
ham = ...
{vals, vecs} = EigensystemSorted[ham];
...

Answer?

As it happens, disordered electrons in one dimension are always localized, even for tiny disorder.  The 

spinless, noninteracting electrons we study here are also always localized in two dimensions. In two 

dimensions, they can become extended when interactions, spin, or strong magnetic fields are added. In 

particular,  2D electrons in a strong magnetic field exhibit the quantum Hall effect (with extended states  

around the edges). Even more interesting, interacting electrons in a strong magnetic field exhibit the 

fractional quantum Hall effect - our first example of an experimental system with fractional charges 

and fractional statistics.
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