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The hints below will help you solve parts (e) and (f) of this question, where we will

numerically evaluate the slowest decaying mode and barrier crossing time by computing

eigenstates of the "quantum" Hamiltonian.

In the Mathematica hints, we shall solve the differential equations directly. In the Python

hints, we shall instead construct a Hamiltonian matrix by discretizing space into segments

of length dx, and then finding the lowest eigenvalue of that Hamiltonian.

Import packages

Define functions to evaluate the potential  and effective quantum potential  and

compute a discretized Hamiltonian matrix . We assume  and . We will

use this matrix to compute the slowest decaying mode for parts (e) and (f).

In [ ]: # Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib

# Adds static figures to notebook: good for printing
%matplotlib inline 

# Interactive windows inside notebook! Must include plt.figure() between plots
# %matplotlib notebook

# Better than from numpy import *, but need np.sin(), np.array(), plt.plot(), e
import numpy as np 
import matplotlib.pyplot as plt

from scipy.sparse import diags
from scipy.linalg import eig_banded
from scipy import special

V (x) Veff(x)

H η = 1 kBT = 1/2

In [ ]: def V(x):
    """
    Returns the cubic potential -x^3/3 + x
    """
    return  ...

def Veff(x, eta=1, kbT=1/2):
    """
    Returns the effective quantum potential evaluated at x. 
    Calculate Veff by pluging the cubic potential into the 
    effective potential you found in part (g). You should find 
    (x^2 - 1)^2/(4 kbT eta) + x/eta (notice this is independent of eta)



(e) For the cubic potential (eqn 7), numerically compute the eigenstate of the transformed

diffusion equation with smallest eigenvalue. What does the eigenvalue predict for the

lifetime? How nearly does it agree with the classic calculation of Kramers:

 </em>

    """
    return ...

def hamiltonian(eta=1, kbT=1/2, x0=5, dx=0.001):
    """
    Returns a discretized hamiltonian matrix for numerical eigendecomposition
    +/-x0 - finite boundary conditions
    dx - discrete grid size
    """
    N = round(2*x0/dx) #total number of elements on grid (boundary at +/- x0)
    x = np.arange(-x0,x0,dx) #make discrete grid
    
    ## Finite difference Kinetic Energy
    #d^2/dx^2 is a matrix with -2 on the diagonal and 1 on the super/subdiagona
    #In the first list put the elements: -2, 1, and 1. In the second list put t
    #0 = diagonal, 1 = superdiagonal, -1 = subdiagonal
    T = -kbT/eta*diags([..., ..., ...], [..., ..., ...], shape=(N, N))/(...)**2
    
    ## Potential Energy 
    #Effective quantum potential on discrete grid
    Veff_x = Veff(x, eta, kbT)
    #Matrix potential (Veff_x on diagonal)
    Veff_mat = diags([...], [0])
    
    H = T + Veff_mat
    
    return H.toarray() 

def eigenSystem(eta=1, kbT=1/2, x0=5, dx=0.001, Nstates=1):
    """
    Returns the Nstates lowest energy eigenvalues and associated eigenstates fo
    the quantum system corresponding to the Fokker-Plank equation with a cubic 
    """
    H = hamiltonian(eta, kbT, x0, dx)
    
    banded = np.array([np.diagonal(H), np.append(np.diagonal(H,1),0)])
    eigs = eig_banded(banded, select="i", select_range=[0,0], lower=True)
    ##eigh_tridiagonal(diagonal(H), diagonal(H,1), select="i", select_range=[0,
    # If you have scipy version 1.0 or newer, eigh_tridiagonal (add from scipy.
    # will give you slightly faster performance

    return eigs
    

λ0 ≈ √KK̃ /(2πη) exp(−E/kBT )

In [ ]: # Compute eigenvalue and eigenstate
x0 = 5
dx=0.001

val, vec = ...



(e) ... What does the eigenvalue predict for the lifetime? How nearly does it agree with 

from the Kramers calculation?

(f) Using the corresponding eigenstate , plot the slowest decaying mode 

, normalized to one, along with the Boltzmann distribution  and the Boltzmann

probability distribution in the approximation that the well is quadratic. Explain how  differs

from the quadratic approximation, and why this is physically sensible. Explain how  differs

from , and how it resolves an important question about how to determine the metastable

probability `in the well'.

val = val[0]
vec = np.transpose(vec)[0]

In [ ]: # Plot the potential, notice where the well and barrier are located
x = np.arange(-x0,x0,dx)

plt.plot(x, ...)
plt.xlabel("x",size=20)
plt.ylabel("V(x)",size=20)
plt.ylim([-10,10])

plt.show()

In [ ]: # Compare eigenvalue approximation for escape time to analytical result

tauNumerical = 1/(...)
tauKramers = 1/(np.sqrt(... * ...)/(2 * np.pi * ...) * np.exp(-(...)/(...)))

# Percent difference between numerical and analytical result
diff = 100*abs(...)/tauNumerical

print(tauNumerical)
print(tauKramers)

print(str(round(diff,4))+"% difference")
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In [ ]: # Compute slowest decaying mode

# Boltzmann distribution for cubic potential
boltz = np.array(np.exp(...))

# Compute slowest decaying mode from eigenstate 'vec'
mode = (vec*np.sqrt(...))

# Plot the unnormalized mode
plt.plot(x,mode)
plt.legend([r"$\rho_0$"],prop={'size': 15})
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)

plt.show()

In [ ]: # Now normalize your slowest decaying mode
# We only know the slowest decaying mode on a discrete grid, so the norm is giv
# adding up the points



# Due to numerical errors your slowest decaying mode may blow up at one of the 
# numerical eigenstate doesn't exactly cancel the blow up from the Boltzmann di
# If this occurs, use cutoff to restrict the normalization calculation to [-xLi
xLim = ...
# boltz, x, and mode are lists. 'cutoff' gives the range of list elements of in
cutoff = round((x0-abs(xLim))/dx)+1
norm = sum(mode[cutoff:-cutoff])*dx

# Adjust Z manually so that the Boltzmann distribution best matches the slowest
# inside the well or approximate Z by normalizing over the inside of the potent
# If you choose the later option, you will want to restrict the normalization t
# Use your plot of the potential above to choose xMin and xMax
xMin = ...
xMax = ...

# Pick range corresponding to inside of the well
cutoff1 = round((x0-abs(xMin))/dx)
cutoff2 = round((x0-abs(xMax))/dx)

Z = sum(boltz[...:-...])*...

# Compute the Boltzmann distribution in the approximation that the well is quad
boltzQuadratic = np.exp(...)
ZQuadratic = sum(...)*...

In [ ]: # Compare Boltzmann distribution to mode
plt.figure(1,[9,7])
plt.plot(x[cutoff:-cutoff],V(x[cutoff:-cutoff]))
plt.plot(x[cutoff:-cutoff],boltz[cutoff:-cutoff]/Z)
plt.plot(x[cutoff:-cutoff],mode[cutoff:-cutoff]/norm)
plt.plot(x[cutoff:-cutoff],boltzQuadratic[cutoff:-cutoff]/ZQuadratic,'--')
plt.ylim([-1,1])
plt.legend([r"$V(x)$",r"$\rho^*$",r"$\rho_0$","Quadratic Well"],prop={'size': 1
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)

plt.show()


