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We saw in “Sloppy monomials’ ’ that the monomial coefficients for polynomial fits to data are ill-
determined, and have sloppy eigenvalues for their Hessian. While linear fits with unconstrained
coefficients have an unbounded model manifold (an infinite hyperplane, so not a hyperribbon), they
allow arbitrarily large gradients in the resulting fit, which are not usually expected in practice and
often suppressed by nonlinearities in realistic models (where parameters can often go to infinity in
ways that keep the predictions bounded).

[ ]: # Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib

# Adds static figures to notebook: good for printing
%matplotlib inline

# Interactive windows inside notebook! Must include plt.figure() between plots
# %matplotlib notebook

# Better than from numpy import *, but need np.sin(), np.array(), plt.plot(),␣
↪etc.

import numpy as np
import matplotlib.pyplot as plt

Here we consider the model manifold for polynomials 𝑦�(𝑥) = ∑𝑁−1
𝛼=0 𝜃𝛼𝑥𝛼 with bounds on the

parameters 𝜃𝛼. The Jacobian
𝐽𝑚𝛼 = 𝜕𝑦�

𝜕𝑡 ∣
𝑥𝑚

(1)

can be viewed as mapping vectors � in parameter space onto vectors � = 𝛿𝑦(x) in prediction space,
where x = {𝑥1, … , 𝑥𝑀} are the locations of the data points being fit. That is, 𝑦�+�(𝑥𝑚) = 𝑦�(𝑥𝑚) +
∑𝛼 𝐽𝑚𝛼𝛿𝛼.

(a) Show (or note) that 𝐽𝑚𝛼 = 𝑥𝛼
𝑚.

Your answer here. Double click to edit.
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Thus

𝐽 = (
1 𝑥1 𝑥2

1 ⋯ 𝑥𝑁−1
1

1 𝑥2 𝑥2
2 ⋯ 𝑥𝑁−1

2⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑀 𝑥2

𝑀 ⋯ 𝑥𝑁−1
𝑀

) (2)

is the famous Vandermonde matrix. If 𝑀 = 𝑁 , this matrix is square, and its determinant is the
ratio of the volume of the allowed parameters � and the volume of the resulting model manifold. The
famous result is that this determinant is given by det(𝐽) = ∏1≤𝑖<𝑗≤𝑁(𝑥𝑖 − 𝑥𝑗). This can be seen
by observing that det 𝐽 obeys the rule that swapping rows of 𝐽 swaps the sign of the determinant,
that the determinant has the correct net degree in the 𝑥𝑖 (the same degree 𝑁(𝑁 − 1)/2 as the
product of the diagonal entries), and then checking for the overall multiplicative constant.

Let us consider the constrained system where the monomial coefficients lie in a sphere ∑𝛼 𝜃2
𝛼 < 𝑁 ,

and consider fits over the unit interval 𝑥 ∈ (0, 1). Each 𝜃 on average then has a variance of order
one, and we are considering the behavior over a distance of order one. This bound corresponds to
controlling the derivatives of the function at zero, since 𝜃𝛼 = 𝑦(𝛼)

� (0) = 𝜕𝛼𝑦�/𝜕𝑡𝛼|𝑥=0. Our general
theorem for nonlinear least-squares models demands a stronger constraint on the functions 𝑓(𝑥) –
that the sum of the squares of the 𝑚th derivatives be less than 𝑁 times a radius of convergence
𝑅−𝑚 for every 𝑥 in the interval. They also use the fact that polynomials have the biggest range of
predictions given the Taylor series bounds, so your calculation is reproducing much of the qualitative
physics of the rigorous proof.

If the typical distance between the points 𝑥𝑖 is Δ𝑥, then the determinant det 𝐽 is ∼ (Δ𝑥)𝑁(𝑁−1)/2,
which becomes really, really tiny as 𝑁 gets large and the minimal spacing 𝐿/𝑀 gets small. As
soon as the number of data points per radius of convergence becomes larger than two, the volume
of the model manifold gets progressively smaller.

(b) Taking 𝑀 = 6 equally spaced points on [0, 1] and 𝑁 = 6 parameters, numerically check that
the determinant of our Vandermonde matrix 𝐽 is tiny.

[ ]: def J(M,N):
""" Vandermonde matrix for points x_m and powers up to N"""
return np.array([[... for ... in range(N)] for ... in np.linspace(0,1,M)])

print(J(6,6))
print("Determinant =", np.linalg.det(...)

Is this volume small because the the predictions are squeezed into a hyperribbon? If the widths
along the 𝑛th direction scale as 𝑤𝑛 = (Δ𝑥)𝑛, then this would work, since ∏𝑁

𝑛=1 𝑤𝑛 = (Δ𝑥)∑𝑁
𝑛=1 𝑛 =

(Δ𝑥)𝑁(𝑁−1)/2. But usually the number of predictions 𝑀 is larger than the number of parameters 𝑁 ,
so 𝐽 isn’t a square matrix. What mathematical operation gives us the shape of the image of the unit
sphere? Singular value decompositions is a powerful generalization of eigenvector decomposition,
and precisely serves this purpose.

Singular value decomposition is not well studied in physics, where we usually care about square
matrices that are symmetric or Hermitian. See the excellent Wikipedia article on SVD. The theory
says that any matrix of real numbers can be decomposed into a product of three matrices:

𝐽 = 𝑈Σ𝑉 𝑇

𝐽𝑖𝛼 = 𝑈𝑖𝑗Σ𝑗𝛽(𝑉 𝑇 )𝛽𝛼. (3)
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Here 𝑈 is 𝑀 × 𝑀 , 𝑉 is 𝑁 × 𝑁 , and Σ is 𝑀 × 𝑁 and diagonal (until the diagonal hits one of
the far sides of the rectangle). Here the columns of 𝑈 and 𝑉 (and hence the rows of 𝑉 𝑇 ) are an
orthonomal basis for the behavior space and the parameter space, and are called the left-singular
vectors and the right-singular vectors of J, respectively. (This makes 𝑈𝑇 𝑈 and 𝑉 𝑇 𝑉 the 𝑀 × 𝑀
and 𝑁 × 𝑁 identity matrices: they are unitary.) Assuming 𝑀 > 𝑁 , the first 𝑁 basis vectors of 𝑈
span the tangent to the model manifold. The 𝛼th right singular vectors of 𝑉 maps onto the 𝛼th
left singular vector of 𝑈 after being stretched an amount given by 𝜎𝛼𝛼.

(c) Taking 𝑀 = 11 equally spaced points and 𝑁 = 6 parameters, dig up the appropriate SVD
routine and find 𝑈 , Σ, and 𝑉 for our our Vandermonde Jacobian J. (The left singular vectors
of 𝑈 are unit vectors on our sphere in parameter space. In behavior space, our sphere becomes
an ellipsoid, with axes along the right singular vectors.) By how much are the unit axes of our
sphere of parameters being squashed in behavior space? Is our hyperellipsoid model manifold
roughly thinner by a constant factor for each new parameter?

[ ]: U, Sigma, V = np.linalg.svd(...)
print(Sigma)
print("ratios = ", ...)

Your answer here. Double click to edit.

By how much are the unit axes of our sphere of parameters being squashed in behavior space? Is
our hyperellipsoid model manifold roughly thinner by a constant factor for each new parameter?

Finally, let us connect the skewness of 𝐽 and its singular values Σ𝛼𝛼 with the Hessian ℋ𝛼𝛽 = 𝑔𝛼𝛽 =
(𝐽𝑇 𝐽)𝛼𝛽.

(d) Show analytically using the singular value decomposition that the eigenvalues of ℋ are the
squares of the singular values of 𝐽 . What are the eigenvectors, in terms of the left and right
singular vectors?

Your answer here. Double click to edit.
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