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This addresses parts (i) and (j) of this exercise, where you numerically evaluate the slowest 
decaying mode and barrier crossing time by computing eigenstates of the “quantum” Hamilto-
nian.

In the Mathematica hints, we shall solve the differential equations directly. In the Python hints, 
we shall instead construct a Hamiltonian matrix by discretizing space into segments of length 

dx, and then finding the lowest eigenvalue of that Hamiltonian.

Define functions to compute the exact scaling function (α) and escape time τ. For simplicity, in 

the numerical portion of the exercise we shall assume η = g = a = 1 throughout.

Exact[α_] := 2^1  3 Pi^2  AiryAi-2^2  3 α^2 + AiryBi-2^2  3 α^2

τExact[α_, g_: 1] := 1  g^2  3 Exact[α]

Construct the Hamiltonian for numerical calculations. Fill in the cubic potential and the expres-
sion for the effective quantum potential. Again, we assume η = g = a = 1. Notice η  cancels in the 

expression for Veff(x)

V[ϵ0_, a_: 1, η_: 1][x_] := ...
Veff[x_, ϵ0_, a_, g_] := ...

H[σ_, ϵ0_, a_, g_] := -1  2 g^2 σ''[x] + Veff[x, ϵ0, a, g] σ[x]

Compute ground state eigenvalue and eigenfunction using NDEigenststem function 

 +/-x0 - finite boundary conditions for numerical evaluation
dx - discrete grid size
How should σ behave at the boundary?

eigenSystem[ϵ0_, g_, a_: 1, x0_: 5, dx_: 0.01, Nstates_: 1] :=
NDEigensystem[{H[ ...], DirichletCondition[σ[x] ⩵ ..., True]},
σ[x], {x, ...}, Nstates, Method → {"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" → {MaxCellMeasure → dx}}}}]

(i) For the cubic potential, numerically compute the eigenstate of the transformed diffusion 

equation with smallest eigenvaluefor α = -2. What does the eigenvalue predict for the lifetime? 

How nearly does it agree with τ  from eqn (11)? Using the corresponding eigenstate, plot the 

slowest decaying mode  ρ(x) = (ρ*)1/2 σ(x), normalized to one, along with  the Boltzmann distribu-
tion ρ*(x)/Z. How well can you match the two inside the well, by varying Z?

Choose ϵ0 so that α = -2 (since we have set a=g=1 the relationship between ϵ0 and α is very 

simple).



ϵ0 = ...;
α = ...;
Print["α = ", α]

{val, vec} = eigenSystem[ ...] // Flatten

Plot the potential, notice where the well and barrier are located

Plot[ ..., {x, ...}, PlotRange → { ...}, AxesLabel → {"x", "V(x)"}]

Compare escape time from eigenvalue to analytical result. We compute the percent difference 

between numerical and analytical result.

τNumerical = 1 / ( ...)
τAnalytical = τExact[ ...] // N

diff = 100 Abs[( ...)]  τAnalytical;

Print[diff, "% difference"]

(i) ... What does the eigenvalue predict for the lifetime? How nearly does it agree with τ  from eqn 

(11)? ...

(i) ... Using the numerical eigenfunction, compute the slowest decaying mode, normalize the 

result. 

Due to numerical errors your slowest decaying mode may blow up at one of the boundaries (the 

numerical eigenstate doesn't exactly cancel the blow up from the Boltzmann distribution). If this 

occurs, use cutoff to restrict the normalization calculation to [-xLim, xLim]

boltz = Exp[ ...];
mode = Sqrt[ ...] vec;
xLim = ...;
Plot[mode, {x, -xLim, xLim}, PlotRange → All,
PlotLegends → {"ρ0"}, AxesLabel → {"x", "Density"}]

norm = NIntegrate[ ..., {x, -xLim, xLim}];

Adjust Z manually so that the Boltzmann distribution best matches the slowest decaying mode 

inside the well or approximate Z by normalizing over a region near the potential well. If you 

choose the later option, you will want to restrict the normalization to the domain [xMin, xMax]  to 

integrate over the well (see plot of the potential above)

xMin = ...;
xMax = ...;
Z = NIntegrate[ ..., {x, ..., ...}];

Plotmode  norm, boltz  Z, {x, -xLim, xLim}, PlotRange → {0, 1},

PlotLegends → {"ρ0", "ρ*"}, AxesLabel → {"x", "Density"}

(i) ... How well can you match the two inside the well, by varying Z?

(j) Repeating the above steps, compute the slowest decaying mode for α=0. Does the eigenvalue 

give τ? Why or why not? Where is the slowest decaying mode peaked? Why do the particles that 
are slowest to escape sit there?

Choose ϵ0SN so that αSN = 0. 

2 ���  NoisySaddleNodeHintsMathematica.nb



ϵ0SN = ...;
αSN = ...;
Print["α = ", αSN]
{valSN, vecSN} = eigenSystem[ ...] // Flatten

Plot the potential at the saddle node bifurcation. Notice where the slope is minimum

Plot[ ..., {x, ...}, PlotRange → { ...}, AxesLabel → {"x", "V(x)"}]

Compare escape time from eigenvalue to analytical result. We compute the percent difference 

between numerical and analytical result.

τNumericalSN = 1 / ( ...)
τAnalyticalSN = τExact[ ...] // N

diffSN = 100 Abs[( ...)]  τAnalyticalSN;

Print[diffSN, "% difference"]

(j) ... Does the eigenvalue give τ? Why or why not? Where is the slowest decaying mode peaked? 

...

(j) ... Using the numerical eigenfunction, compute the slowest decaying mode, normalize the 

result. ...
  

Due to numerical errors your slowest decaying mode may blow up at one of the boundaries (the 

numerical eigenstate doesn' t exactly cancel the blow up from the Boltzmann distribution). If this 

occurs, use cutoff to restrict the normalization calculation to [-xLim, xLim]

boltzSN = Exp[ ...];
modeSN = Sqrt[ ...] * ...;
xLim = ...;
Plot[modeSN, {x, -xLim, xLim}, PlotRange → All]
normSN = NIntegrate[ ..., {x, -xLim, xLim}];

PlotmodeSN  normSN, {x, -xLim, xLim}, PlotRange → {0, 1},

PlotLegends → {"ρ0"}, AxesLabel → {"x", "Density"}

(j) ... Where is the slowest decaying mode peaked? Why do the particles that are slowest to 

escape sit there?

Optional: For a range of positive and negative α, plot the eigenvalue approximation to the scal-
ing function (α) = (g a)2/3 τ = τ (since g = a = 1)  and compare to the exact formula Eq. (4).

eigApprox = Table ..., ...  eigenSystem[ϵ][[1, 1]], {ϵ, ..., ..., 0.1};;

theoryPlot = LogPlot[ ... [α], {α, ...},
PlotStyle → Black, PlotLegends → LineLegend[{"Analytical"}]];

Show[theoryPlot,
ListLogPlot[{eigApprox}, PlotLegends → LineLegend[{"Eigenvalues"}]],
PlotRange → All, AxesLabel → {"α", "(α)"}]
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