
Activated rates and the saddle-node transition
(Sethna, "Entropy, Order Parameters, and Complexity", ex. 12.26)

© 2019, James Sethna, all rights reserved.

The hints below will help you solve parts (i) and (j) of this question, where we will numerically evaluate the slowest
decaying mode and barrier crossing time by computing eigenstates of the "quantum" Hamiltonian.

In the Mathematica hints, we shall solve the differential equations directly. In the Python hints, we shall instead
construct a Hamiltonian matrix by discretizing space into segments of length d , and then finding the lowest
eigenvalue of that Hamiltonian.

Import packages

𝑥

In [ ]:

Define functions to compute the exact scaling function  and escape time . For simplicity, in the numerical
portion of the exercise we shall assume  throughout.

 (𝛼) 𝜏

𝜂 = 𝑔 = 𝑎 = 1

In [ ]:

Define functions to evaluate the potential  and effective quantum potential  and compute a discretized
Hamiltonian matrix . Again, we assume . We will use this matrix to compute the slowest decaying
mode for parts (i) and (j).

𝑉 (𝑥) (x)𝑉eff
𝐻 𝜂 = 𝑔 = 𝑎 = 1

# Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib
 
# Adds static figures to notebook: good for printing
%matplotlib inline 
 
# Interactive windows inside notebook! Must include plt.figure() between plots
# %matplotlib notebook
 
# Better than from numpy import *, but need np.sin(), np.array(), plt.plot(), etc.
import numpy as np 
import matplotlib.pyplot as plt
from scipy.sparse import diags
from scipy.linalg import eig_banded
from scipy import special

def Texact(alpha):
    """
    Returns the exact scaling function T(alpha)
    """
    return 2**(1/3) * np.pi**2 * (special.airy(-2**(2/3) * alpha)[0]**2 
                                + special.airy(-2**(2/3) * alpha)[2]**2)
 
def tauExact(alpha, g=1):
    """
    Returns the exact escape time for a cubic potential 
    """
    return g**(-2/3) * Texact(alpha)



In [ ]:

(i) For the cubic potential, numerically compute the eigenstate of the transformed diffusion equation with smallest
eigenvalue for . What does the eigenvalue predict for the lifetime? How nearly does it agree with  from eqn
(11)? Using the corresponding eigenstate, plot the slowest decaying mode , normalized to one,
along with the Boltzmann distribution . How well can you match the two inside the well, by varying ?

𝛼 = −2 𝜏

(𝑥) =𝜌0 𝜌∗
⎯ ⎯⎯⎯√ 𝜎0

(𝑥)/𝑍𝜌∗ 𝑍

def V(x, eps0, a=1, eta=1):
    """
    Returns the cubic potential -eta ax^3/3 - eta eps0 x
    """
    return  ......
 
 
def Veff(x, eps0, g=1, a=1):
    """
    Returns the effective quantum potential evaluated at x. 
    Calculate Veff by pluging the cubic potential into the 
    effective potential you found in part (g). You should find 
    (ax^2 + eps0)^2/(2g^2) + ax (notice this is independent of eta)
    """
    return ......
 
 
def hamiltonian(eps0, g=1, a=1, x0=5, dx=0.001):
    """
    Returns a discretized hamiltonian matrix for numerical eigendecomposition
    +/-x0 - finite boundary conditions
    dx - discrete grid size
    """
    N = round(2*x0/dx) #total number of elements on grid (boundary at +/- x0)
    x = np.arange(-x0,x0,dx) #make discrete grid
    
    ## Finite difference Kinetic Energy
    #d^2/dx^2 is a matrix with -2 on the diagonal and 1 on the super/subdiagonal divided
    #In the first list put the elements: -2, 1, and 1. In the second list put the corres
    #0 = diagonal, 1 = superdiagonal, -1 = subdiagonal
    T = -1/2*g**2*diags([......, ......, ......], [......,......, ......], shape=(N, N))/(......)**2
    
    ## Potential Energy 
    #Effective quantum potential on discrete grid
    Veff_x = Veff(x, eps0, g, a)
    #Matrix potential (Veff_x on diagonal)
    Veff_mat = diags([......], [0])
    
    H = T + Veff_mat
    
    return H.toarray() 
 
def eigenSystem(eps0, g=1, a=1, x0=5, dx=0.001, Nstates=1):
    """
    Returns the Nstates lowest energy eigenvalues and associated eigenstates for 
    the quantum system corresponding to the Fokker-Plank equation with a cubic potential
    """
    H = hamiltonian(eps0, g, a, x0, dx)
    
    banded = np.array([np.diagonal(H), np.append(np.diagonal(H,1),0)])
    eigs = eig_banded(banded, select="i", select_range=[0,0], lower=True)
    ##eigh_tridiagonal(np.diagonal(H), np.diagonal(H,1), select="i", select_range=[0,0])
    # If you have scipy version 1.0 or newer, eigh_tridiagonal (add from scipy.linalg im
    # will give you slightly faster performance
 
    return eigs
    



Choose so that (since we have set the relationship between and is very simple)𝜖0 𝛼 = −2 𝑎 = 𝑔 = 1 𝜖0 𝛼

In [ ]:

In [ ]:

In [ ]:

(i) ... What does the eigenvalue predict for the lifetime? How nearly does it agree with  from eqn (11)?

Using the corresponding eigenstate, plot the slowest decaying mode , normalized to one, along
with the Boltzmann distribution . ...

𝜏

(𝑥) =𝜌0 𝜌∗
⎯ ⎯⎯⎯

√ 𝜎0

(𝑥)/𝑍𝜌∗

In [ ]:

# Compute eigenvalue and eigenstate
x0 = 5
dx=0.001
eps0 = ......
alpha = ......
 
print(chr(945),"=", alpha)
 
val, vec = eigenSystem(......)
val = val[0]
vec = np.transpose(vec)[0]

# Plot the potential, notice where the well and barrier are located
x = np.arange(......)
 
plt.plot(x, ......)
plt.xlabel("x",size=20)
plt.ylabel("V(x)",size=20)
plt.ylim([-10,10])
 
plt.show()

# Compare eigenvalue approximation for escape time to analytical result
 
tauNumerical = ......
tauAnalytical = tauExact(......)
 
# Percent difference between numerical and analytical result
diff = 100*abs(......)/tauAnalytical
 
print(tauNumerical)
print(tauAnalytical)
 
print(str(round(diff,4))+"% difference")

# Compute slowest decaying mode
 
# Boltzmann distribution for cubic potential
boltz = np.array(np.exp(......))
 
# Compute slowest decaying mode from eigenstate 'vec'
mode = (vec*np.sqrt(......))
 
# Plot the unnormalized mode
plt.plot(x,mode)
plt.legend([r"$\rho_0$"],prop={'size': 15})
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)
 
plt.show()



In [ ]:

(i) ... How well can you match the two inside the well, by varying ?𝑍

(j) Repeating the above steps, compute the slowest decaying mode for . Does the eigenvalue agree with the
prediction from ? Why or why not? Plot the slowest decaying mode. Where is it peaked? Why do the particles that
are slowest to escape sit there?

𝛼 = 0

𝜏

In [ ]:

# Now normalize your slowest decaying mode
# We only know the slowest decaying mode on a discrete grid, so the norm is given by
# adding up the points
# Due to numerical errors your slowest decaying mode may blow up at one of the boundarie
# numerical eigenstate doesn't exactly cancel the blow up from the Boltzmann distributio
# If this occurs, use cutoff to restrict the normalization calculation to [-xLim, xLim]
xLim = ......
# boltz, x, and mode are lists. 'cutoff' gives the range of list elements of interest
cutoff = round((x0-abs(xLim))/dx)+1
norm = sum(mode[cutoff:-cutoff])*dx
 
# Adjust Z manually so that the Boltzmann distribution best matches the slowest decaying
# inside the well or approximate Z by normalizing over the inside of the potential well
# If you choose the later option, you will want to restrict the normalization to the dom
# Use your plot of the potential above to choose xMin and xMax
xMin = ......
xMax = ......
 
# Pick range corresponding to inside of the wellcutoff1 = round((x0-abs(xMin))/dx)
cutoff1 = round((x0-abs(xMin))/dx)
cutoff2 = round((x0-abs(xMax))/dx)
 
Z = sum(boltz[......:-......])*(......)
 
 
# Compare Boltzmann distribution to mode
plt.plot(x[cutoff:-cutoff],mode[cutoff:-cutoff]/norm)
plt.plot(x[cutoff:-cutoff],boltz[cutoff:-cutoff]/Z)
plt.ylim([0,1.5])
plt.legend([r"$\rho_0$",r"$\rho^*$"],prop={'size': 15})
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)
 
 
plt.show()

# Compute eigenvalue and eigenstate
# Choose eps0_SN so that alpha=0. Again, for simplicity use g=a=1
 
x0 = 5
dx= 0.001
eps0_SN = ...
alphaSN = ...
 
 
print(chr(945),"=",alphaSN)
 
valSN, vecSN = eigenSystem(...)
valSN = valSN[0]
vecSN = np.transpose(vecSN)[0]



In [ ]:

In [ ]:

(j) ... Does the eigenvalue agree with the prediction from ? Why or why not? ...𝜏

In [ ]:

In [ ]:

(j) ... the slowest decaying mode. Where is it peaked? Why do the particles that are slowest to escape sit there?

# Plot the potential at the saddle node bifurcation. Notice where the slope is minimum
x = np.arange(......)
 
plt.plot(x, ......)
plt.xlabel("x",size=20)
plt.ylabel("V(x)",size=20)
plt.ylim([-10,10])
 
plt.show()

# Compare eigenvalue approximation for escape time to analytical result
 
tauNumericalSN = 1/(...)
tauAnalyticalSN = tauExact(...)
 
#percent difference between numerical and analytical result
diffSN = 100*abs(...)/tauAnalyticalSN
 
print(tauNumericalSN)
print(tauAnalyticalSN)
 
print(str(round(diffSN,4))+"% difference")

# Compute slowest decaying mode
 
# Boltzmann distribution for cubic potential
boltzSN = np.array(......)
 
# Compute slowest decaying mode from eigenstate 'vec'
modeSN = (...*... np.sqrt(......))
 
# Plot the unormalized mode
plt.plot(x, modeSN)
plt.legend([r"$\rho_0$",r"$\rho_\mathrm{well}$"],prop={'size': 15})
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)
 
plt.show()

# Now normalize your slowest decaying mode
# Due to numerical errors your slowest decaying mode may blow up at one of the boundarie
# numerical eigenstate doesn't exactly cancel the blow up from the Boltzmann distributio
# If this occurs, use cutoff to restrict the normalization calculation to [-xLim, xLim]
xLim = ......
cutoff = round((x0-abs(xLim))/dx)+1
normSN = sum(......)*dx
 
plt.plot(x[cutoff:-cutoff],modeSN[cutoff:-cutoff]/normSN)
plt.legend([r"$\rho_0$",r"$\rho_\mathrm{well}$"],prop={'size': 15})
plt.xlabel("x",size=20)
plt.ylabel("Density",size=20)
 
plt.show()



Optional: For a range of positive and negative , plot the eigenvalue approximation to the scaling function
 (when ) and compare to the exact formula eqn (11).

𝛼

 (𝛼) = (𝑔 𝑎 𝜏 = 𝜏)2/3 𝑎 = 𝑔 = 1

In [ ]:

In [ ]:

x0 = 5
dx = 0.005
 
#List of alpha 
alphaList = np.array([...... for eps0 in np.arange(......,......,0.1)])
eigApprox = [.../...  eigenSystem(eps0, x0=x0, dx=dx)[0][0] for eps0 in np.arange(......, ......, 
 
analytical = ......(alphaList)

plt.plot(alphaList, analytical, '-b')
plt.plot(alphaList, eigApprox, 'ok')
 
plt.legend(["Analytical", "Eigenvalues"],prop={'size': 15})
 
 
plt.xlabel(r'$\alpha$', size=20)
plt.ylabel(r'$\mathcal{T}(\alpha)$', size=20)
 
plt.yscale('log')


