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Perhaps the most substantive contribution to public health provided by physics is the
application of statistical mechanics ideas to model disease propagation. In this
exercise, we shall introduce a few categories of epidemiological models, discuss how
they can inspire and inform public health strategies (once adapted to real-world data),
and then study one model as a continuous phase transition. You should leave this
exercise empowered to think about the public health responses and modeling of
potential pandemics---Ebola, SARS, and now COVID-19. Perhaps a few of us will
contribute to the field.

Pandemics can undergo a phase transition. For diseases like measles, a single
contagious child in an environment where nobody is immune will infect between
twelve and eighteen people before recovering, depending on details like population
density. For influenza, this number is around two to three. We define the basic
reproduction number  to be this average number of people infected by a
contagious person before recovering, in a fully susceptible community.  thus is 12-
18 for measles, 2-3 for influenza. For a new pathogen, where nobody is immune,

 will mean that an outbreak will eventually die out, and  means that a
large initial outbreak will spread globally until reaching a significant fraction of the
entire population. Much effort is spent during a pandemic to lower  into the safe
range.

This transition is a continuous phase transition, with fluctuations on all scales near the
critical threshold . In this exercise, you will briefly consider three types of
epidemic models (compartmental models, network models, and lattice models),
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compare different social interventions designed to lower , and explore the
fluctuations and critical behavior very close to threshold.

Compartmental models use coupled differential equations to model the disease
spread between different {\em compartments} of the population. The classic SIR
model (see Exercise 6.25) involves three coupled compartments,

where , , and  are the proportions of the population that are susceptible,
infected, and recovered. The parameter  measures the rate of infection spreading
contact between people and  is the rate at which people recover.

Network models treat people as nodes, connected to their contacts with edges. They
assume a transmissibility , the average probability that a victim will infect each of
their contacts. For low  the epidemics die out; there will be a critical  above which
a large outbreak will continue to grow exponentially. There are a variety of networks
studied: fully connected networks (where SIR models become valid), loopless
branching tree networks where everyone has  neighbors, real-world networks
gleaned from data on households and school attendance, and scale-free networks
with a power-law distribution  for the probability that a person has 
contacts (has degree ). (Scale-free networks have been found to approximate the
pattern of interactions between proteins in cells and nodes on the Internet, and serve
as our model for populations with wide variation in the number of social contacts with
potential for disease transmission.)

Lattice models---networks in two dimensions where only near neighbors are
contacts---are sometimes used in agricultural settings, where the plant victims are
immobile and the disease is spread only by direct proximity.

(a) In the SIR model, if a person is first infected at , what is the probability they are
still infected, and contagious, at time , given the recovery rate ? If they infect people
at a rate how many will they infect before they recover in a fully susceptible large
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Your answer here.

Network models usually ignore the long-range correlations between nodes: except for
real-world networks, the contacts are usually picked at random so there are very few
short loops. In that limit, Meyers et al. [133] express  in terms of the moments

 of the degree distribution, which they solve for using generating
functions (see Exercise 2.23):

People like nurses and extroverts with a lot of contacts can act as super-spreaders,
infecting large numbers of colleagues. Scale-free networks explore what happens
with a range of contacts: the smaller the exponent , the larger the range of variation.
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(b) What is the critical transmissibility  predicted by the network model in the
equation above? Show that, for a scale-free network with  the critical
transmissibility ; no matter how unlikely a contact will cause disease spread,
there are rare individuals with so many contacts that they (on average) will cause
exponential growth of the pathogen. If our population had , what percentage of
the people would we need to vaccinate to immunize everyone with more than 100
contacts? What would the resulting , the maximum safe transmissibility, be? (If you
find that the first percentage is small use that fact to simplify your calculation of
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Your answer here.

An important limitation of these network results is that they assume the population is
structureless: apart from the degree distribution, the network is completely random.
This is not the case in a 2D square lattice, for example. It has degree distribution

, but connections between nodes are defined by the lattice, and not
randomly assigned. As you might expect, disease spread is closely related to
percolation. In the mean-field theory, percolation predicts that the epidemic size
distribution exponent is ; you will explore this in parts (e) and (f). In 2D,
the lattice structure changes the universality class, the epidemic sizes are given by
the cluster-size distribution exponent .

Besides exhibiting different power-law scaling, the value of the critical transmissibility
can be quite different in structured populations.

(c) What is  for a branching tree with  branches at each node (so
)? (Hint: You can derive this directly, or use your answer to the first

question in part (b).) Compare that to the critical transmissibility for a 2D square lattice,
. Which is more resistant to disease spread?
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Your answer here.

One might imagine that a lattice model would mimic the effect of travel restrictions to
prevent disease spread. Travel restrictions reduce the contact numbers, but do not
change the qualitative behavior. This is due to the small world phenomenon: a
surprisingly small number of long-range contacts can change the qualitative behavior
of a network (see Exercise 1.7). Only a few long-distance travelers are needed to
make our world well connected.

Finally, let us numerically explore the fluctuations and scaling behavior exhibited by
epidemics at their critical points. We shall assume (correctly) that our population is
well connected. We shall also assume that our population does not have system-
scale heterogeneities: we ignore cities, subpopulations of vulnerable and crowded
people, and events like the Olympics. Given these assumptions, one can argue that
the qualitative behavior near enough to the critical point  is universal, and
controlled not by the details of the network or SIR model but only by the distance

 to the critical point.
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Let us organize our victims in "generations" of infected people, with  the number
of victims infected by the  people in generation ; we shall view the generation as
roughly corresponding to the time evolution of the pandemic. The mean

, but it will fluctuate about that value with a Poisson distribution, so
 is a random integer chosen from a Poisson distribution with mean .

(d) Write a routine pandemicInstance, that returns the evolution vector
 and the total size . Iterate your routine with with

 and  in a loop until you find an epidemic with size .
Plot the trajectory of this epidemic,  vs. . Does your epidemic nearly halt during the
time interval? Do the pieces of the epidemic before and after this near halt appear
statistically similar to the entire epidemic?
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Your answer here.

One might presume that these large fluctuations could pose a real challenge to
guessing whether social policies designed to suppress a growing
pandemic are working. We must note, however, that the fluctuations are important
only near , or when the infected population becomes small.

At , the size of the epidemic  has a power-law probability density
 for large avalanches .

(e) Write a routine pandemicEnsemble that does not store the trajectory, but instead
runs  epidemics at a given value of , and returns a list of their sizes. Plot a
histogram of the sizes of  epidemics with , with, say, 100 bins.
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def pandemicInstance(R0=1., i0 = 1):
    I = i0
    Itraj = [I]
    size = i0
    while I!=0:
        I = np.random.poisson(R0*I)
        size += ......
        Itraj.append(......)   
    return size, Itraj
​
size, traj = pandemicInstance(......)
while size < 1000000:
    size, traj = pandemicInstance(0.9999)    
plt.plot(I)
plt.title("size is "+ str(size))
plt.xlabel("Time in shells")
plt.ylabel("Infected in this shell")
plt.show()
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Regular histograms here are not useful; our distribution has a long but important tail
of large events. Most epidemics subside quickly at this value of , but a few last for
hundreds of generations and infect tens of thousands of people. We need to convert
to logarithmic binning.

(f) Change the bins used in your histogram to increase logarithmically, and be sure to
normalize so that the counts are divided by the "bin width" (the number of integers in
that bin) and the number of epidemics being counted. Present the distribution of sizes
for  epidemics at  on log--log plots. On the same plot, show the
power-law prediction  at the critical point.
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def pandemicEnsemble(N, R0=1., i0 = 1):
    sizes = []
    for n in range(N):
        I = ......
        size = i0
        while I!=0:
            I = np.random.poisson(R0*I)
            size += ......
        sizes += [......]
    return sizes
​
sizes = pandemicEnsemble(10**5, R0=......)
plt.hist(sizes, bins=100)
plt.title("Epidemic size histogram")
plt.xlabel("Size")
plt.ylabel("Counts")
plt.show()

def intlogspace(start, stop, num=50, endpoint=True, base=10.0):
    realBins = np.logspace(start, stop, num, endpoint, base)
    bins = np.unique(realBins.astype(int))
    return bins
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In Exercise 12.28 we derived the universal scaling form for the avalanche size
distribution in the random-field Ising model. This calculation also applies to our
pandemic model. It predicts that the probability  of an epidemic of size  for
small distance  below the critical point is given by

where the nonuniversal constant  is around  to . Note that this is the
predicted power law , but cut off above a typical size that grows quadratically
in .

(g) Multiply your data and the scaling prediction by  to make them near constant
for small sizes (to make it easier to study the cutoff). Plot both on a log-log plot. Does
the universal scaling function describe your simulated epidemic ensemble?
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sizes = pandemicEnsemble(10000, R0=0.99)
​
def logbinnedHist(vals, nBins=30, exponent=3/2):
    maxval = max(vals)
    bins = intlogspace(0,int(np.log10(maxval))+1,nBins)
    widths = (bins[1:]-bins[:-1])
    counts, edges = np.histogram(vals, bins=bins)
    hist_norm = counts/(widths*len(vals))
    plt.plot(bins, (exponent-1) * bins**(-exponent), color='green
    plt.bar(bins[:-1], hist_norm, widths)
    plt.xscale('log')
    plt.yscale('log')
    plt.legend()
​
logbinnedHist(sizes)
plt.title("Epidemic size probability distribution")
plt.xlabel("Size S")
plt.ylabel("P(S)")
plt.show()
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The tools we learn in statistical mechanics---generating functions, universality, power
laws, and scaling functions---make tangible predictions for practical models of
disease propagation. They work best in the region of greatest societal importance

, where costly efforts to contain the pandemic are minimized while avoiding
uncontrolled growth.
≈ 1𝑅0

def logbinnedHistScaling(vals,R0=0.9,C=0.45):
    num = len(vals)
    maxval = max(vals)
    bins = intlogspace(0,int(np.log10(maxval))+1,30)
    widths = (bins[1:]-bins[:-1])
    centers = (bins[1:]+bins[:-1])/2
    counts, edges = np.histogram(vals, bins=bins)
    counts_rescaled = ...*... counts/(num*widths)
    plt.plot(centers, C*np.exp(-centers*(1-R0)**2/2), color='gree
    plt.plot(centers, ......, label = "Rescaled data")
    minY = max(min(counts_rescaled),10**(-4))
    plt.ylim(minY,10**0)
    plt.title("Epidemic size distribution scaling plot")
    plt.xlabel("Size S")
    plt.ylabel(r"S**(3/2) P(S)")
    plt.xscale('log')
    plt.yscale('log')
    
sizes = pandemicEnsemble(100000, R0=0.9)
logbinnedHistScaling(sizes,R0=0.9)
​


