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In this exercise, we use renormalization-group and scaling methods to study the onset of chaos. 
There are several routes by which a dynamical system can start exhibiting chaotic motion; this 

exercise studies the period-doubling cascade, first extensively investigated by Feigenbaum.

Chaos is often associated with dynamics which stretch and fold; when a batch of taffy is being 

pulled, the motion of a speck in the taffy depends sensitively on the initial conditions. A simple 

representation of this physics is provided by the map
            f(x)=4μx(1-x)
restricted to the domain (0,1). It takes f(0)=f(1)=0, and f(1/2)=μ. Thus, for μ=1 it precisely folds the 

unit interval in half, and stretches it to cover the original domain.

f[x_, μ_] := 4. μ ...

The study of dynamical systems (e.g., differential equations and maps like the logistic map f(x) 
above often focuses on the behavior after long times, where the trajectory moves along the 

attractor. We can study the onset and behavior of chaos in our system by observing the evolu-
tion of the attractor as we change μ. For small enough μ, all points shrink to the origin; the origin 

is a stable fixed-point which attracts the entire interval x∈(0,1). For larger μ, we first get a stable 

fixed-point inside the interval, and then period doubling.

(a) Iteration Set μ=0.2; iterate f for some initial points x0 of your choosing, and convince yourself 
that they all are attracted to zero. Plot f and the diagonal y=x on the same plot. Are there any 

fixed-points other than x=0? Repeat for μ=0.3, μ=0.7, and 0.8. What happens?

Nest[f[#, ...] &, ..., ...]

Plot[{x, f[ ...]}, {x, 0, 1}, AspectRatio → Equal]

Plot[{x, f[ ..., 0.2], f[ ..., 0.3], ...},
{x, 0, 1}, AspectRatio → Equal, PlotLegends → "Expressions" ]

On the same graph, plot f, the diagonal y=x, and the segments {x0,x0}, {x0,f(x0)}, {f(x0),f(x0)}, 
{f(x0),f(f(x0))}, ... (representing the convergence of the trajectory to the attractor). See how μ=0.7 

and 0.8 differ. Try other values of μ.

Note: We write functions like PlotIterate abstractly, in terms of a function g(x,eta), so that we can 

also examine fsin(x,B) where η=B instead of η=μ.



PlotIterate[μ_, Nskip_: 0, Niter_: 100, x0_: 0.49] :=
Block[{}, g1 = Plot[{x, f[x, μ]}, {x, 0, 1}];
a0 = Nest[ ... &, x0, ...]; traj = NestList[ ... &, a0, ...];
boxPoints = Flatten[Table[{{traj[[n]], traj[[n]]}, {traj[[n]], traj[[n + 1]]}},

{n, 1, Length[traj] - 1}], 1];
g2 = ListPlot[boxPoints, Joined → True, PlotRange → All];
Show[g1, g2, PlotLabel → "μ=" <> ToString[μ], AspectRatio → 1]]

PlotIterate[0.2]

Table[PlotIterate[μ], {μ, {0.7, 0.75, 0.8, 0.9}}]

By iterating the map many times, find a point a0 on the attractor. As above, then plot the succes-
sive iterates of a0 for μ=0.7, 0.8, 0.88, 0.89, 0.9, and 1.0.

PlotIterate[0.2, 10]

Table[PlotIterate[μ, ...], {μ, {0.7, 0.75, 0.8, 0.9}}]

You can see at higher μ that the system no longer settles into a stationary state at long times. 
The fixed-point where f(x)=x exists for all μ>1/4, but for larger μ it is no longer stable. If x* is a
fixed-point (so f(x*)=x*) we can add a small perturbation f(x*+ϵ)≈f(x*)+f’(x*) ϵ = x*+f’(x*) ϵ; the 

fixed-point is stable (perturbations die away) if |f′(x�)|<1. (In a continuous evolution, perturba-
tions die away if the Jacobian of the derivative at the fixed-point has all negative eigenvalues. 
For mappings, perturbations die away if all eigenvalues of the Jacobian have magnitude less 

than one.)
In this particular case, once the fixed-point goes unstable the motion after many iterations 

becomes periodic, repeating itself after two iterations of the map---so f(f(x)) has two new fixed-
points. This is called period doubling. Notice that by the chain rule df(f(x))/dx=f’(x)f’(f(x)), and 

indeed
df [N]dx=df(f(…f(x)…))dx=f’(x)f’(f(x))…f’(f(…f(x)…)),

so the stability of a period-N orbit is determined by the product of the derivatives of f at each 

point along the orbit.

(b) Analytics: Find the fixed-point x�(μ) of the map f(x), and show that it exists and is stable for 
1/4<μ<3/4. If you are ambitious or have a computer algebra program, show that the period-two 

cycle is stable for 3/4<μ<1 + 6 /4.

NSolve[{f[xStar, μ] ⩵ ..., D[f[xStar, μ], xStar] ⩵ ...}, {xStar, μ}]

NSolve[{f[f[xStar, μ], μ] ⩵ xStar, D[f[f[xStar, μ], μ], xStar] ⩵ -1}, {xStar, μ}]

Print"Is there a solution with μ = ", 1 + Sqrt[6]  4.

(c) Bifurcation diagram: Plot the attractor as a function of μ, for 0<μ<1.. (Pick regularly-spaced 

δμ, run Ntransient steps, record Ncycles steps, and plot. After the routine is working, you should 

be able to push Ntransient and Ncycles both larger than 100, and δμ<0.01.)  Also on the bifurca-
tion diagram, plot the line x=1/2 where f(x) reaches its maximum.

Attractor[η_, Nskip_: 100, Niter_: 100, g_: f, x0_: 0.49] := Block[{a0 = Nest[ ...]},
attractor = NestList[ ...]; points = Table[{η, x}, {x, attractor}]]
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BifurcationDiagram[g_: f, ηMin_: 0, ηMax_: 1,
δη_: 0.001, Nskip_: 100, Niter_: 100, x0_: 0.49] := Block[{},
g1 = ListPlot[Flatten[Table[Attractor[ ...], {η, ηMin, ηMax, δη}], 1]];
g2 = Plot[0.5, {η, ...}, AxesLabel → {μ, x},

PlotStyle → {Green, Dashed}, LabelStyle → Large];
Show[g2, g1, ImageSize → Full]]

BifurcationDiagram[]

BifurcationDiagram[ ... {Zoom in; decrease δη and increase Nskip until it looks nice}]

Also plot the attractor for another one-humped map
fSin(x)=Bsin(πx),

for 0<B<1. Do the bifurcation diagrams appear similar to one another?

fSin[x_, B_] := ...
BifurcationDiagram[fSin]

Notice the complex, structured, chaotic region for large μ. How do we get from a stable fixed-
point μ<3/4 to chaos? The onset of chaos in this system occurs through a cascade of period 

doublings. There is the sequence of bifurcations as μ increases---the period-two cycle starting at 
μ1=3/4, followed by a period-four cycle starting at μ2, period-eight at μ3---a whole period-dou-
bling cascade. The convergence appears geometrical, to a fixed-point μ∞:
μn≈μ∞-Aδ-n,
so
δ=limn→∞(μn-1-μn-2)/(μn-μn-1)
and there is a similar geometrical self-similarity along the x axis, with a (negative) scale factor α 

relating each generation of the tree.

In the exercise ‘Invariant Measures’, we explained the boundaries in the chaotic region as 

images of x=1/2. These special points are also convenient for studying period-doubling. Since 

x=1/2 is the maximum in the curve, f’(1/2)=0. If it were a fixed-point (as it is for μ=1/2), it would 

not only be stable, but unusually so: a shift by ϵ away from the fixed point converges after one 

step of the map to a distance ϵf’(1/2)+ϵ2/f’’(1/2)=O(ϵ2). We say that such a fixed-point is super-
stable. (The superstable points are the values of μ in the figure above which intersect the green 

line x=1/2.) If we have a period-N orbit that passes through x=1/2, so that the Nth iterate fN(1/2)≡
f(…f(1/2)…)=1/2, then the orbit is also superstable, since the derivative of the iterated map is the 

product of the derivatives along the orbit, and hence is also zero.
These superstable points happen roughly half-way between the period-doubling bifurcations, 
and are easier to locate, since we know that x=1/2 is on the orbit. Let us use them to investigate 

the geometrical convergence and self-similarity of the period-doubling bifurcation diagram from 

part~(d). We will measure both the superstable values of μ and the size of the centermost ‘leaf’ 
in the bifurcation diagram (crossed by the line x=1/2 where f(x) takes its maximum).  For this part 
and part~(h), you will need a routine that finds the roots G(y)=0 for functions G of one variable y.
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(d) The Feigenbaum numbers and universality: Numerically, find the values of μs[n] at which the 

2n-cycle is superstable (the intersections of the attractor with the green line x=1/2), for the first 
few values of n. (Hint: Define a function G (μ) = f [2

n]μ(1/2)-1/2, and find the root as a function of μ. 
(Note: You’ll want to define G[μ_Real] to avoid having Mathematica generating giant symbolic 

expressions.) In searching for μs[n+1], you will want to search in a range (μs[n]+ϵ,μsn+(μsn-μsn-
1)/A) where A∼3 works pretty well. Calculate μS0 and μS1 by hand.)

μS0 = 0.5;

Solveff1  2, μ, μ ⩵ 1  2, μ

μS1 = μ /. Solveff1  2, μ, μ ⩵ 1  2, μ[[3]]

nMax = 11;
GetSuperstablePointsAndIntervals[g_, nMax_: nMax, ηS0_, ηS1_, xMax_: 0.5] :=
Module[{ϵ = 10.^-10, A = 3, ηS, leafSizes},
ηS[0] = ηS0; ηS[1] = ηS1; leafSizes[1] = ...;
For[n = 2, n ≤ nMax, n += 1, {ηMin =. ..; ηMax =. ..;

G[η_Real] := Nest[ ...] - xMax;
ηS[n] = η /. FindRoot[G[η], {η, ηMin, ηMax}];
leafSizes[n] = Nest[g[#, ηS[n]] &, xMax, 2^ ...] - xMax}];

{ηS, leafSizes}]

{μS, leafSizes} = GetSuperstablePointsAndIntervals[f, 11, μS0, μS1];

Table[μS[n], {n, 0, 10}]
Table[leafSizes[n], {n, 1, 10}]

Calculate the ratios (μsn-1-μ
s
n-2)/(μ

s
n-μ

s
n-1); do they appear to converge to the Feigenbaum 

number δ=4.6692016091029909…? Estimate μ∞ by using your last two values of μsn, your last 

ratio estimate of δ, and the equations μn ≈ μ∞ -Aδ-n
 and δ = limn→∞((μsn-1-μ

s
n-2)/(μ

s
n-μ

s
n-1) 

above. In the superstable orbit with 2n points, the nearest point to x=1/2 is f 2
n-1(1/2). (This is 

true because, at the previous superstable orbit, 2n-1 iterates returned us to the original point 

x=1/2.) Calculate the ratios of the amplitudes f 2
n-1(1/2)-1/2 at successive values of n; do they 

appear to converge to the universal value α=-2.50290787509589284…?

ExponentEstimates[g_, ηS_, leafSizes_, xMax_: 0.5, nMax_: nMax] :=
Module[{δ, α, η∞},
For[n = 2, n ≤ nMax, n += 1, {δ[n] = ...; α[n] = ...}];
η∞ = ηS[nMax] + ...; {δ, α, η∞}]

{δs, αs, μ∞} = ExponentEstimates[f, μS, leafSizes];

Table[{δs[n], αs[n]}, {n, 2, nMax}]

Calculate the same ratios for the map f2(x)=Bsin(πx); do α and δ appear to be universal 
(independent of the mapping)?

BS0 = B /. SolvefSin1  2, B ⩵ ..., B[[1]]

BS1 = B /. FindRoot ... ⩵ 1  2, {B, ...}

{Bs, leafSizesSin} = GetSuperstablePointsAndIntervals[ ..., 11, ..., ...];
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{δSin, αSin, B∞} = ExponentEstimates[g, Bs, leafSizesSin];
{δSin[nMax], αSin[nMax], B∞}

The limits α and δ are independent of the map, so long as it folds (one hump) with a quadratic 

maximum. They are the same, also, for experimental systems with many degrees of freedom 

which undergo the period-doubling cascade. This self-similarity and universality suggests that 
we should look for a renormalization-group explanation.

(e) Coarse-graining in time. Plot f(f(x)) vs.\ x for μ=0.8, together with the line y=x. Notice that the 

period-two cycle of f becomes a pair of stable fixed-points for f[2].<\em> (We are coarse-graining 

in time---removing every other point in the time series, by studying f(f(x)) rather than f.) Compare 

the plot with that for f(x) vs.\ x for μ=0.5. Notice that the region zoomed in around x=1/2 for 
f[2]=f(f(x)) looks quite a bit like the entire map f at the smaller value μ=0.5. Plot f[4](x) at μ=0.875; 
notice again the small one-humped map near x=1/2.

Plot[{x, ...}, {x, 0, 1}, PlotLabel → "f(f(x)), μ=0.8", AspectRatio → 1]
Plot[{x, ...}, {x, 0, 1}, PlotLabel → "f(x), μ=0.5", AspectRatio → 1]
Plot[{x, ...}, {x, 0, 1}, PlotLabel → "f(f(f(f(x)))), μ=0.875", AspectRatio → 1]

The fact that the one-humped map reappears in smaller form just after the period-doubling 

bifurcation is the basic reason that succeeding bifurcations so often follow one another. The 

fact that many things are universal is due to the fact that the little one-humped maps have a 

shape which becomes independent of the original map after several period-doublings.
Let us define this renormalization-group transformation T, taking function space into itself. 
Roughly speaking, T will take the small upside-down hump in f(f(x)), invert it, and stretch it to 

cover the interval from (0,1). Notice in your graphs for part~(g) that the line y=x crosses the plot 
f(f(x)) not only at the two points on the period-two attractor, but also (naturally) at the old fixed-
point x�[f] for f(x). This unstable fixed-point plays the role for f[2] that the origin played for f; our 
renormalization-group rescaling must map (x�[f],f(x�))=(x�,x�) to the origin. The corner of the 

window that maps to (1,0) is conveniently located at 1-x�, since our map happens to be symmet-
ric about x=1/2. (For asymmetric maps, we would need to locate this other corner f(f(xc))=x� 

numerically. As it happens, breaking this symmetry is irrelevant at the fixed-point.) For a general 
one-humped map g(x) with fixed-point x�[g] the side of the window is thus of length 2(x�[g]-1/2). 
To invert and stretch, we must thus rescale by a factor α[g]=-1/(2(x�[g]-1/2)). Our renormaliza-
tion-group transformation is thus a mapping T[g] taking function space into itself, where

T[g](x) = α[g] (g(g(x/α[g]+x*[g])) - x*[g]).
(This is just rescaling x to squeeze into the window, applying g twice, shifting the corner of the 

window to the origin, and then rescaling by α to fill the original range (0,1)×(0,1).)

(f) Scaling and the renormalization group: Write routines that calculate x�[g] and α[g], and define 

the renormalization-group transformation T[g]. Plot T[f], T[T[f]],... and compare them. Are we 

approaching a fixed-point f* in function space?

Clear[xStar, α]

xStar[g_, η_] := xStar[g, η] = x /. FindRoot[ ..., {x, 0.5, 1.}]

α[g_, η_] := α[g, η] = 1.0  ...

Clear[T]

T[g_] := T[g] = α[g, #2] g[g[#1 / ... + ..., #2], #2] - ... &
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Plot[{f[x, μ∞], T[f][x, μ∞], T[T[f]][x, μ∞]},
{x, 0, 1}, AspectRatio → 1, PlotLegends → "Expressions"]

Plot[{T[T[f]][x, μ∞], T[T[fSin]][x, B∞]},
{x, 0, 1}, AspectRatio → 1, PlotLegends → "Expressions"]
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