
Period doubling
(Sethna, "Entropy, Order Parameters, and Complexity", ex. 12.9)

© 2017, James Sethna, all rights reserved.

In this exercise, we use renormalization-group and scaling methods to study the onset of chaos. There are several
routes by which a dynamical system can start exhibiting chaotic motion; this exercise studies the period-doubling
cascade, first extensively investigated by Feigenbaum.

Import packages

In []:

Chaos is often associated with dynamics which stretch and fold; when a batch of taffy is being pulled, the motion of a
speck in the taffy depends sensitively on the initial conditions. A simple representation of this physics is provided by
the map

restricted to the domain . It takes , and . Thus, for it precisely folds the unit
interval in half, and stretches it to cover the original domain.

𝑓(𝑥) = 4𝜇𝑥(1 − 𝑥)
(0, 1) 𝑓(0) = 𝑓(1) = 0 𝑓(1/2) = 𝜇 𝜇 = 1

In []:

The study of dynamical systems (e.g., differential equations and maps like the logistic map above often focuses
on the behavior after long times, where the trajectory moves along the attractor. We can study the onset and behavior
of chaos in our system by observing the evolution of the attractor as we change . For small enough , all points
shrink to the origin; the origin is a stable fixed-point which attracts the entire interval . For larger , we first
get a stable fixed-point inside the interval, and then period doubling.

𝑓(𝑥)

𝜇 𝜇

𝑥 ∈ (0, 1) 𝜇

(a) Iteration Set ; iterate for some initial points of your choosing, and convince yourself that they all are
attracted to zero. Plot and the diagonal on the same plot. Are there any fixed-points other than ?
Repeat for , , and . What happens?

Note: We write functions like Iterate abstractly, in terms of a function g(x,eta), so that we can also examine
where instead of .

𝜇 = 0.2 𝑓 𝑥0
𝑓 𝑦 = 𝑥 𝑥 = 0

𝜇 = 0.3 𝜇 = 0.7 0.8

(𝑥,𝐵)𝑓sin
𝜂 = 𝐵 𝜂 = 𝜇

Sometimes gives interactive new windows
Must show() after plot, figure() before new plot
%matplotlib

Adds static figures to notebook: good for printing
%matplotlib inline

Interactive windows inside notebook! Must include plt.figure() between plots
%matplotlib notebook

Better than from numpy import *, but need np.sin(), np.array(), plt.plot(), etc.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import brentq

def f(x,mu):
 """
 Logistic map f(x) = 4 mu x (1-x), which folds the unit interval (0,1)
 into itself.
 """
 return ...

In []:

In []:

On the same graph, plot , the diagonal , and the segments , , ,
, ... (representing the convergence of the trajectory to the attractor). See how and

differ. Try other values of .

𝑓 𝑦 = 𝑥 { , }𝑥0 𝑥0 { , 𝑓()}𝑥0 𝑥0 {𝑓(), 𝑓()}𝑥0 𝑥0
{𝑓(), 𝑓(𝑓())}𝑥0 𝑥0 𝜇 = 0.7 0.8

𝜇

def Iterate(x0, N, eta, g=f):
 """
 Iterate the function g(x,eta) N times, starting at x=x0.
 Return g(g(...(g(x))...)). Used to find a point on the attractor
 starting from some arbitrary point x0.

 Calling Iterate for the Feigenbaum map f^[1000] (x,0.9) at mu=0.9 would look like
 Iterate(x, 1000, 0.9, f)

 We'll later be using Iterate to study the sine map
 fSin(x,B) = B sin(pi x)
 so passing in the function and arguments will be necessary for
 comparing the logistic map f to fSin.

 Inside Iterate you'll want to apply g(x0, eta).
 """
 for i in range(N):
 x0 = ...
 return x0

[print(mu, "->", Iterate(np.random.rand(4),100,mu,f)) for mu in [0.2,0.3,0.8,0.9]];

plt.figure()
plt.axes().set_aspect('equal')
xs = np.arange(0,1,0.01)
plt.plot(xs, xs)
for mu in (0.2, 0.3, 0.8, 0.9):
 plt.plot(xs, f(...), label = "mu=%g" %mu)
plt.legend(loc=2)

In []:

By iterating the map many times, find a point on the attractor. As above, then plot the successive iterates of for
, , , , , and .

𝑎0 𝑎0
𝜇 = 0.7 0.8 0.88 0.89 0.9 1.0

In []:

You can see at higher that the system no longer settles into a stationary state at long times. The fixed-point where
 exists for all , but for larger it is no longer stable. If is a fixed-point (so) we can

add a small perturbation ; the fixed-point is stable (perturbations die
away) if . (In a continuous evolution, perturbations die away if the Jacobian of the derivative at the fixed-
point has all negative eigenvalues. For mappings, perturbations die away if all eigenvalues of the Jacobian have
magnitude less than one.)

𝜇

𝑓(𝑥) = 𝑥 𝜇 > 1/4 𝜇 𝑥∗ 𝑓() =𝑥∗ 𝑥∗

𝑓(+ 𝜖) ≈ 𝑓() + ()𝜖 = + ()𝜖𝑥∗ 𝑥∗ 𝑓 ′ 𝑥∗ 𝑥∗ 𝑓 ′ 𝑥∗

| ()| < 1𝑓 ′ 𝑥∗

def IterateList(x,eta,Niter=10,Nskip=0,g=f):
 """
 Iterate the function g(x, eta) Niter-1 times, starting at x
 (or at x iterated Nskip times), so that the full trajectory
 contains N points.
 Returns the entire list
 (x, g(x), g(g(x)), ... g(g(...(g(x))...))).

 Can be used to explore the dynamics starting from an arbitrary point
 x0, or to explore the attractor starting from a point x0 on the
 attractor (say, initialized using Nskip).

 For example, you can use Iterate to find a point xAttractor on the
 attractor and IterateList to create a long series of points attractorXs
 (thousands, or even millions long, if you're in the chaotic region),
 and then use
 pylab.hist(attractorXs, bins=500, normed=1)
 pylab.show()
 to see the density of points.
 """
 x = Iterate(x,Nskip,eta,g)
 xs = [x]
 for i in range(Niter-1):
 x = ...
 xs.append(x)
 return xs

def PlotIterate(mu,Niter=100,Nskip=0,x0=0.49):
 """
 Plots g, the diagonal y=x, and the boxes made of the segments
 [[x0,x0], [x0, g(x0)], [g(x0), g(x0)], [g(x0), g(g(x0))], ...

 Notice the xs and the ys are just the trajectory with each point
 repeated twice, where the xs drop the final point and the ys drop
 the initial point
 """
 plt.figure()
 plt.axes().set_aspect('equal')
 plt.title('mu = '+ str (mu))
 xarray = np.arange(0.,1.,0.01)
 plt.plot(xarray,xarray,'r-') # Plot diagonal
 plt.plot(xarray,...,'g-',linewidth=3) # Plot function
 traj = IterateList(x0,mu,Niter,Nskip)
 doubletraj = np.array([traj,traj]).transpose().flatten()
 xs = doubletraj[...] # Drops last point
 ys = doubletraj[...] # Drops first point
 plt.plot(xs, ys, 'b-', linewidth=1, antialiased=True)

for mu in (0.7, 0.75, 0.8, 0.9):
 PlotIterate(mu)

for mu in (0.7, 0.75, 0.8, 0.9):
 PlotIterate(mu, Nskip=...)

In this particular case, once the fixed-point goes unstable the motion after many iterations becomes periodic,
repeating itself after two iterations of the map---so has two new fixed-points. This is called period doubling.
Notice that by the chain rule , and indeed

so the stability of a period- orbit is determined by the product of the derivatives of at each point along the orbit.

𝑓(𝑓(𝑥))

𝑑 𝑓(𝑓(𝑥))/𝑑𝑥 = (𝑥) (𝑓(𝑥))𝑓 ′ 𝑓 ′

𝑑 𝑓 [𝑁]

𝑑𝑥
=
𝑑 𝑓(𝑓(… 𝑓(𝑥)…))

𝑑𝑥
= (𝑥) (𝑓(𝑥))… (𝑓(… 𝑓(𝑥)…)),𝑓

′
𝑓
′

𝑓
′

𝑁 𝑓

(b) Analytics: Find the fixed-point of the map , and show that it exists and is stable for . If
you are ambitious or have a computer algebra program, show that the period-two cycle is stable for

.

(c) Bifurcation diagram: Plot the attractor as a function of , for .. (Pick regularly-spaced , run
steps, record steps, and plot. After the routine is working, you should be able to push and
both larger than 100, and .) Also on the bifurcation diagram, plot the line where reaches its
maximum.

(𝜇)𝑥∗ 𝑓(𝑥) 1/4 < 𝜇 < 3/4

3/4 < 𝜇 < (1 +)/46
⎯⎯

√

𝜇 0 < 𝜇 < 1 𝛿𝜇 𝑁transient
𝑁cycles 𝑁transient 𝑁cycles

𝛿𝜇 < 0.01 𝑥 = 1/2 𝑓(𝑥)

In []:

In []:

In []:

Also plot the attractor for another one-humped map

for . Do the bifurcation diagrams appear similar to one another?
(𝑥) = 𝐵 sin(𝜋𝑥),𝑓sin

0 < 𝐵 < 1

In []:

Notice the complex, structured, chaotic region for large . How do we get from a stable fixed-point to
chaos? The onset of chaos in this system occurs through a cascade of period doublings. There is the sequence of
bifurcations as increases---the period-two cycle starting at , followed by a period-four cycle starting at

, period-eight at ---a whole period-doubling cascade. The convergence appears geometrical, to a fixed-point
:

so

and there is a similar geometrical self-similarity along the axis, with a (negative) scale factor relating each
generation of the tree.

𝜇 𝜇 < 3/4

𝜇 = 3/4𝜇1
𝜇2 𝜇3
𝜇∞

≈ − 𝐴 ,𝜇𝑛 𝜇∞ 𝛿−𝑛

𝛿 = (−)/(−)lim
𝑛→∞

𝜇𝑛−1 𝜇𝑛−2 𝜇𝑛 𝜇𝑛−1

𝑥 𝛼

def BifurcationDiagram(etaMin=0., etaMax=1., deltaEta=0.001, g=f, x0=0.49, Nskip=100, Nit
 plt.figure(figsize=(50,20))
 plt.xlim((etaMin,etaMax))
 etaArray = np.arange(etaMin, etaMax, deltaEta)
 etas = []
 trajs = []
 for eta in etaArray:
 etas.extend([eta]*Niter)
 trajs.extend(IterateList(...))
 plt.plot([0.,1.],[0.5,0.5],'g-')
 plt.setp(plt.axes().get_xticklabels(),fontsize=40)
 plt.setp(plt.axes().get_yticklabels(),fontsize=40)
 plt.ylabel('x', fontsize=40)
 plt.xlabel(r'η', fontsize=40)
 plt.scatter(etas, trajs, marker = '.', s=0.2)

BifurcationDiagram()

BifurcationDiagram(...[Zoom in; decrease deltaEta and increase Nskip until it looks nice]

def fSin(x, B):
 return ...

BifurcationDiagram(g=fSin)

In the exercise 'Invariant Measures', we explained the boundaries in the chaotic region as images of . These
special points are also convenient for studying period-doubling. Since is the maximum in the curve,

. If it were a fixed-point (as it is for), it would not only be stable, but unusually so: a shift by
away from the fixed point converges after one step of the map to a distance . We
say that such a fixed-point is superstable. (The superstable points are the values of in the figure above which
intersect the green line x=1/2.) If we have a period- orbit that passes through , so that the th iterate

, then the orbit is also superstable, since the derivative of the iterated map is the
product of the derivatives along the orbit, and hence is also zero.

These superstable points happen roughly half-way between the period-doubling bifurcations, and are easier to locate,
since we know that is on the orbit. Let us use them to investigate the geometrical convergence and self-
similarity of the period-doubling bifurcation diagram from part (d). We will measure both the superstable values of
and the size of the centermost 'leaf' in the bifurcation diagram (crossed by the line where takes its
maximum). For this part and part (h), you will need a routine that finds the roots for functions of one
variable .

𝑥 = 1/2

𝑥 = 1/2

(1/2) = 0𝑓 ′ 𝜇 = 1/2 𝜖

𝜖 (1/2) + /2 (1/2) = 𝑂()𝑓 ′ 𝜖2 𝑓″ 𝜖2

𝜇

𝑁 𝑥 = 1/2 𝑁

(1/2) ≡ 𝑓(… 𝑓(1/2)…) = 1/2𝑓𝑁

𝑥 = 1/2

𝜇

𝑥 = 1/2 𝑓(𝑥)

𝐺(𝑦) = 0 𝐺

𝑦

(d) The Feigenbaum numbers and universality: Numerically, find the values of at which the -cycle is superstable
(the intersections of the attractor with the green line), for the first few values of . (Hint: Define a function

, and find the root as a function of . In searching for , you will want to search in a
range where works pretty well. Calculate and by hand.) Also, find the
separation , the opening between the two edges of the leaf crossed by the maximum of
(green line above).

𝜇𝑠𝑛 2𝑛

𝑥 = 1/2 𝑛

𝐺(𝜇) = (1/2) − 1/2𝑓
[]2𝑛

𝜇 𝜇 𝜇𝑠𝑛+1
(+ 𝜖, + (−)/𝐴)𝜇𝑠𝑛 𝜇𝑠𝑛 𝜇𝑠𝑛 𝜇𝑠𝑛−1 𝐴 ∼ 3 𝜇𝑠0 𝜇𝑠1
1/2 − (1/2,)𝑓 [𝑛−1] 𝜇𝑠𝑛 𝑓

In []:

Calculate the ratios ; do they appear to converge to the Feigenbaum number
? Estimate by using your last two values of , your last ratio estimate of , and

the equations and above. In the superstable orbit with

(−)/(−)𝜇𝑠𝑛−1 𝜇𝑠𝑛−2 𝜇
𝑠
𝑛 𝜇𝑠𝑛−1

𝛿 = 4.6692016091029909… 𝜇∞ 𝜇𝑠𝑛 𝛿

≈ − 𝐴𝜇𝑛 𝜇∞ 𝛿−𝑛 𝛿 = (−)/(−)lim𝑛→∞ 𝜇𝑛−1 𝜇𝑛−2 𝜇𝑛 𝜇𝑛−1 2𝑛

def FindSuperstable(g, Niter, etaMin, etaMax, xMax=0.5):
 """
 Finds superstable orbit g^[nIterated](xMax, eta) = xMax
 in range (etaMin, etaMax).
 Must be started with g-xMax of different sign at etaMin, etaMax.

 Notice that nIterated will usually be 2^n. (Sorry for using the
 variable n both places!)

 Uses optimize.brentq, defining a temporary function, G(eta)
 which is zero for the superstable value of eta.

 G iterates g nIterated times and subtracts xMax
 (basically Iterate - xMax, except with only one argument eta)
 """
 def G(eta):
 return Iterate(...)-xMax
 eta_root = brentq(G, etaMin, etaMax)
 return eta_root

def GetSuperstablePointsAndIntervals(g, eta0, eta1, nMax = 11, xMax=0.5):
 """
 Given the parameters for the first two superstable parameters eta_ss[0]
 and eta_ss[1], finds the next nMax-1 of them up to eta_ss[nMax].
 Returns dictionary eta_ss

 Usage:
 Find the value of the parameter eta_ss[0] = eta0 for which the fixed
 point is xMax and g is superstable (g(xMax) = xMax), and the
 value eta_ss[1] = eta1 for which g(g(xMax)) = xMax, either
 analytically or using FindSuperstable by hand.
 mus = GetSuperstablePoints(f, 9, eta0, eta1)

 Searches for eta_ss[n] in the range (etaMin, etaMax),
 with etaMin = eta_ss[n-1] + epsilon and
 etaMax = eta_ss[n-1] + (eta_ss[n-1]-eta_ss[n-2])/A
 where A=3 works fine for the maps I've tried.
 (Asymptotically, A should be smaller than but comparable to delta.)
 """
 eps = 1.0e-10
 A = 3.
 eta_ss = {}
 eta_ss[0] = eta0
 eta_ss[1] = eta1
 leafSize = {}
 leafSize[1] = ...
 for n in np.arange(2, nMax+1):
 etaMin = ...
 etaMax = ...
 nIterated = 2**n
 eta_ss[n] = FindSuperstable(...)
 leafSize[n] = Iterate(xMax, 2**(...), eta_ss[n], g)-xMax
 return eta_ss, leafSize

mu0 = FindSuperstable(f,1,0.3,1.0,0.5)
mu1 = FindSuperstable(f,2,mu0 + 1.e-6,1.0,0.5)
mus, leafSizes = GetSuperstablePointsAndIntervals(f,mu0,mu1)

print(mus)
print(leafSizes)

points, the nearest point to is . (This is true because, at the previous superstable orbit,
iterates returned us to the original point .) Calculate the ratios of the amplitudes at

i l f d th t t th i l l ?

𝑥 = 1/2 (1/2)𝑓 []2𝑛−1 2𝑛−1

𝑥 = 1/2 (1/2) − 1/2𝑓 []2𝑛−1

2 50290787509589284

In []:

Calculate the same ratios for the map ; do and appear to be universal (independent of the
mapping)?

(𝑥) = 𝐵 sin(𝜋𝑥)𝑓2 𝛼 𝛿

In []:

The limits and are independent of the map, so long as it folds (one hump) with a quadratic maximum. They are the
same, also, for experimental systems with many degrees of freedom which undergo the period-doubling cascade.
This self-similarity and universality suggests that we should look for a renormalization-group explanation.

𝛼 𝛿

(e) Coarse-graining in time. Plot vs.\ for , together with the line . Notice that the period-two
cycle of becomes a pair of stable fixed-points for .<\em> (We are coarse-graining in time---removing every
other point in the time series, by studying rather than .) Compare the plot with that for vs.\ for

. Notice that the region zoomed in around for looks quite a bit like the entire map
at the smaller value . Plot at ; notice again the small one-humped map near .

𝑓(𝑓(𝑥)) 𝑥 𝜇 = 0.8 𝑦 = 𝑥

𝑓 𝑓 [2]

𝑓(𝑓(𝑥)) 𝑓 𝑓(𝑥) 𝑥

𝜇 = 0.5 𝑥 = 1/2 = 𝑓(𝑓(𝑥))𝑓 [2] 𝑓

𝜇 = 0.5 (𝑥)𝑓 [4] 𝜇 = 0.875 𝑥 = 1/2

nMax = 11; # Note: Value of mu for n>9 not reliable

def ExponentEstimates(g, eta_ss, leafSizes, xMax=0.5, nMax=nMax):
 """
 Given superstable 2^n cycle values eta_ss[n], calculates
 delta[n] = (eta_{n-1}-eta_{n-2})/(eta_{n}-eta_{n-1})
 and alpha[n] = leafSizes[n-1]/leafSizes[n]

 Also extrapolates eta to etaInfinity using definition of delta and
 most reliable value for delta:
 delta = lim{n->infinity} (eta_{n-1}-eta_{n-2})/(eta_n - eta_{n-1})

 Returns delta and alpha dictionaries for n>=2, and etaInfinity
 """
 delta = {}
 alpha = {}
 for n in range(2, nMax+1):
 delta[n] = ...
 alpha[n] = ...
 etaInfinity = eta_ss[nMax] + ...
 return delta, alpha, etaInfinity

deltas, alphas, muInfinity = ExponentEstimates(f, mus, leafSizes, nMax=11)

deltas[nMax], alphas[nMax], muInfinity

B0 = FindSuperstable(fSin,1,...)
B1 = FindSuperstable(fSin,2,B0+1.e-6,...)
Bs, leafSizesSin = GetSuperstablePointsAndIntervals(...)
deltaSin, alphaSin, BInfinity = ExponentEstimates(...)

deltaSin[nMax], alphaSin[nMax], BInfinity

In []:

The fact that the one-humped map reappears in smaller form just after the period-doubling bifurcation is the basic
reason that succeeding bifurcations so often follow one another. The fact that many things are universal is due to the
fact that the little one-humped maps have a shape which becomes independent of the original map after several
period-doublings.

Let us define this renormalization-group transformation , taking function space into itself. Roughly speaking, will
take the small upside-down hump in invert it, and stretch it to cover the interval from . Notice in your
graphs for part (g) that the line crosses the plot not only at the two points on the period-two attractor,
but also (naturally) at the old fixed-point for . This unstable fixed-point plays the role for that the
origin played for ; our renormalization-group rescaling must map to the origin. The
corner of the window that maps to is conveniently located at , since our map happens to be symmetric
about . (For asymmetric maps, we would need to locate this other corner numerically. As it
happens, breaking this symmetry is irrelevant at the fixed-point.) For a general one-humped map with fixed-point

 the side of the window is thus of length . To invert and stretch, we must thus rescale by a factor
. Our renormalization-group transformation is thus a mapping taking function

space into itself, where

(This is just rescaling to squeeze into the window, applying twice, shifting the corner of the window to the origin,
and then rescaling by to fill the original range .)

𝑇 𝑇

𝑓(𝑓(𝑥)), (0, 1)

𝑦 = 𝑥 𝑓(𝑓(𝑥))

[𝑓]𝑥∗ 𝑓(𝑥) 𝑓 [2]

𝑓 ([𝑓], 𝑓()) = (,)𝑥∗ 𝑥∗ 𝑥∗ 𝑥∗

(1, 0) 1 − 𝑥∗

𝑥 = 1/2 𝑓(𝑓()) =𝑥𝑐 𝑥∗

𝑔(𝑥)

[𝑔]𝑥∗ 2([𝑔] − 1/2)𝑥∗

𝛼[𝑔] = −1/(2([𝑔] − 1/2))𝑥∗ 𝑇 [𝑔]

𝑇 [𝑔](𝑥) = 𝛼[𝑔] (𝑔 (𝑔(𝑥/𝛼[𝑔] + [𝑔])) − [𝑔]) .𝑥∗ 𝑥∗

𝑥 𝑔

𝛼 (0, 1) × (0, 1)

(f) Scaling and the renormalization group: Write routines that calculate and , and define the renormalization-
group transformation . Plot , ,... and compare them. Are we approaching a fixed-point in
function space?

[𝑔]𝑥∗ 𝛼[𝑔]

𝑇 [𝑔] 𝑇 [𝑓] 𝑇 [𝑇 [𝑓]] 𝑓∗

plt.figure()
plt.axes().set_aspect('equal')
x = np.arange(0.,1.,0.01)
plt.plot(...)
plt.plot(...)
plt.title('mu='+str(0.8))

plt.figure()
plt.axes().set_aspect('equal')
plt.plot(x,f(x,0.5))
plt.plot(x,x)
plt.title('mu='+str(0.5))

plt.figure()
plt.axes().set_aspect('equal')
plt.plot(...)
plt.plot(...)
plt.title('mu='+str(0.875))

In []: def XStar(g, mu):
 """
 Finds fixed point of one-humped map g, which is assumed to be
 between xMax and 1.0.
 """
 def gXStar(x,mu): return ...
 return brentq(gXStar, 1/2, 1.0, args=(mu,))

def Alpha(g, mu):
 """
 Finds the (negative) scale factor alpha which inverts and rescales
 the small inverted region of g(g(x)) running from (1-x*) to x*.
 """
 gWindowMax = XStar(g, mu)
 gWindowMin = ...
 return 1.0/(gWindowMin-gWindowMax)

class T:
 """
 Creates a new function T[g] from g, implementing Feigenbaum's
 renormalization-group transformation of function space into itself.

 We define it as a class so that we can initialize alpha and xStar,
 which otherwise would need to be recalculated each time T[g] was
 evaluated at a point x.

 Usage:
 Tg = T(g, args)
 Tg(x) evaluates the function at x
 """
 def __init__(self, g, mu):
 """
 Stores g and args.
 Calculates and stores xStar and alpha.
 """
 self.mu = mu
 self.xStar = XStar(g, mu)
 self.alpha = Alpha(g, mu)
 self.g = g

 def __call__(self, x, mu):
 """
 Defines xShrunk to be x/alpha + x*
 Evaluates g2 = g(g(xShrunk))
 Returns expanded alpha*(g2-xStar)
 """
 xShrunk = .../self....+ self....
 g2 = self.g(self.g(...), ...)
 return ... * (g2 - ...)

In []:

This explains the self-similarity; in particular, the value of as iterates to becomes the Feigenbaum number𝛼[𝑔] 𝑔 𝑓∗

𝛼 = −2.5029…

(g) Universality and the renormalization group: Using the sine function above, compare to at their
onsets of chaos. Are they approaching the same fixed-point?

𝑇 [𝑇 []]𝑓sin 𝑇 [𝑇 [𝑓]]

In []:

By using this rapid convergence in function space, one can prove both that there will (often) be an infinite geometrical
series of period-doubling bifurcations leading to chaos, and that this series will share universal features (exponents
and and features) that are independent of the original dynamics.

𝛼

𝛿

def PlotTIterates(g, mu, nMax = 2):
 """
 Plots g(x), T[g](x), T[T[g]](x) ...
 on the same plot, for x from (0,1)
 """
 plt.figure(figsize=(10,10))
 plt.axes().set_aspect('equal')
 xs = np.arange(0.01, 1., 0.01)
 plt.plot(xs,xs)
 Tg = {}
 Tg[0] = lambda x, mu: g(x, mu)
 for n in range(1,nMax+1):
 Tg[n] = T(Tg[n-1], mu=mu)

 for n in range(nMax+1):
 plt.plot(xs, Tg[n](xs,mu))

PlotTIterates(f,muInfinity,nMax=3)

plt.figure(figsize=(10,10))
plt.axes().set_aspect('equal')
xs = np.arange(0.001, 1., 0.01)
plt.plot(xs,xs)
T2F = T(T(f, mu=muInfinity),mu=muInfinity)
plt.plot(xs,T2F(xs,muInfinity),"r-")
T2Fsin = T(T(fSin, mu=BInfinity),mu=BInfinity)
plt.plot(xs,T2Fsin(xs,BInfinity),"g-");

