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In this exercise, we use renormalization-group and scaling methods to study the onset of chaos. There are several
routes by which a dynamical system can start exhibiting chaotic motion; this exercise studies the period-doubling
cascade, first extensively investigated by Feigenbaum.

Import packages

In [ ]:

Chaos is often associated with dynamics which stretch and fold; when a batch of taffy is being pulled, the motion of a
speck in the taffy depends sensitively on the initial conditions. A simple representation of this physics is provided by
the map

restricted to the domain . It takes , and . Thus, for  it precisely folds the unit
interval in half, and stretches it to cover the original domain.

𝑓(𝑥) = 4𝜇𝑥(1 − 𝑥)
(0, 1) 𝑓(0) = 𝑓(1) = 0 𝑓(1/2) = 𝜇 𝜇 = 1
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The study of dynamical systems (e.g., differential equations and maps like the logistic map  above often focuses
on the behavior after long times, where the trajectory moves along the attractor. We can study the onset and behavior
of chaos in our system by observing the evolution of the attractor as we change . For small enough , all points
shrink to the origin; the origin is a stable fixed-point which attracts the entire interval . For larger , we first
get a stable fixed-point inside the interval, and then period doubling.

𝑓(𝑥)

𝜇 𝜇

𝑥 ∈ (0, 1) 𝜇

(a) Iteration Set ; iterate  for some initial points  of your choosing, and convince yourself that they all are
attracted to zero. Plot  and the diagonal  on the same plot. Are there any fixed-points other than ?
Repeat for , , and . What happens?

Note: We write functions like Iterate abstractly, in terms of a function g(x,eta), so that we can also examine 
where  instead of .

𝜇 = 0.2 𝑓 𝑥0
𝑓 𝑦 = 𝑥 𝑥 = 0

𝜇 = 0.3 𝜇 = 0.7 0.8

(𝑥,𝐵)𝑓sin
𝜂 = 𝐵 𝜂 = 𝜇

# Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib
 
# Adds static figures to notebook: good for printing
%matplotlib inline 
 
# Interactive windows inside notebook! Must include plt.figure() between plots
# %matplotlib notebook
 
# Better than from numpy import *, but need np.sin(), np.array(), plt.plot(), etc.
import numpy as np 
import matplotlib.pyplot as plt
from scipy.optimize import brentq

def f(x,mu):
    """
    Logistic map f(x) = 4 mu x (1-x), which folds the unit interval (0,1)
    into itself.
    """
    return ...
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In [ ]:

On the same graph, plot , the diagonal , and the segments , , ,
, ... (representing the convergence of the trajectory to the attractor). See how  and 

differ. Try other values of .

𝑓 𝑦 = 𝑥 { , }𝑥0 𝑥0 { , 𝑓( )}𝑥0 𝑥0 {𝑓( ), 𝑓( )}𝑥0 𝑥0
{𝑓( ), 𝑓(𝑓( ))}𝑥0 𝑥0 𝜇 = 0.7 0.8

𝜇

def Iterate(x0, N, eta, g=f):
    """
    Iterate the function g(x,eta) N times, starting at x=x0.
    Return g(g(...(g(x))...)). Used to find a point on the attractor
    starting from some arbitrary point x0.
 
    Calling Iterate for the Feigenbaum map f^[1000] (x,0.9) at mu=0.9 would look like
        Iterate(x, 1000, 0.9, f)
 
    We'll later be using Iterate to study the sine map
        fSin(x,B) = B sin(pi x)
    so passing in the function and arguments will be necessary for
    comparing the logistic map f to fSin.
 
    Inside Iterate you'll want to apply g(x0, eta).
    """
    for i in range(N):
        x0 = ...
    return x0
 
[print(mu, "->", Iterate(np.random.rand(4),100,mu,f)) for mu in [0.2,0.3,0.8,0.9]];

plt.figure()
plt.axes().set_aspect('equal')
xs = np.arange(0,1,0.01)
plt.plot(xs, xs)
for mu in (0.2, 0.3, 0.8, 0.9):
    plt.plot(xs, f(...), label = "mu=%g" %mu)
plt.legend(loc=2)
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By iterating the map many times, find a point  on the attractor. As above, then plot the successive iterates of  for
, , , , , and .

𝑎0 𝑎0
𝜇 = 0.7 0.8 0.88 0.89 0.9 1.0
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You can see at higher  that the system no longer settles into a stationary state at long times. The fixed-point where
 exists for all , but for larger  it is no longer stable. If  is a fixed-point (so ) we can

add a small perturbation ; the fixed-point is stable (perturbations die
away) if . (In a continuous evolution, perturbations die away if the Jacobian of the derivative at the fixed-
point has all negative eigenvalues. For mappings, perturbations die away if all eigenvalues of the Jacobian have
magnitude less than one.)

𝜇

𝑓(𝑥) = 𝑥 𝜇 > 1/4 𝜇 𝑥∗ 𝑓( ) =𝑥∗ 𝑥∗

𝑓( + 𝜖) ≈ 𝑓( ) + ( )𝜖 = + ( )𝜖𝑥∗ 𝑥∗ 𝑓 ′ 𝑥∗ 𝑥∗ 𝑓 ′ 𝑥∗

| ( )| < 1𝑓 ′ 𝑥∗

def IterateList(x,eta,Niter=10,Nskip=0,g=f):
    """
    Iterate the function g(x, eta) Niter-1 times, starting at x 
    (or at x iterated Nskip times), so that the full trajectory 
    contains N points.
    Returns the entire list
    (x, g(x), g(g(x)), ... g(g(...(g(x))...))).
 
    Can be used to explore the dynamics starting from an arbitrary point
    x0, or to explore the attractor starting from a point x0 on the
    attractor (say, initialized using Nskip).
 
    For example, you can use Iterate to find a point xAttractor on the
    attractor and IterateList to create a long series of points attractorXs
    (thousands, or even millions long, if you're in the chaotic region),
    and then use
        pylab.hist(attractorXs, bins=500, normed=1)
        pylab.show()
    to see the density of points.
    """
    x = Iterate(x,Nskip,eta,g)
    xs = [x]
    for i in range(Niter-1):
        x = ...
        xs.append(x)
    return xs
 
def PlotIterate(mu,Niter=100,Nskip=0,x0=0.49):
    """
    Plots g, the diagonal y=x, and the boxes made of the segments
    [[x0,x0], [x0, g(x0)], [g(x0), g(x0)], [g(x0), g(g(x0))], ...
    
    Notice the xs and the ys are just the trajectory with each point 
    repeated twice, where the xs drop the final point and the ys drop
    the initial point
    """
    plt.figure()
    plt.axes().set_aspect('equal')
    plt.title('mu = '+ str (mu))
    xarray = np.arange(0.,1.,0.01)
    plt.plot(xarray,xarray,'r-')   # Plot diagonal
    plt.plot(xarray,...,'g-',linewidth=3)  # Plot function
    traj = IterateList(x0,mu,Niter,Nskip)
    doubletraj = np.array([traj,traj]).transpose().flatten()
    xs = doubletraj[...] # Drops last point
    ys = doubletraj[...]  # Drops first point
    plt.plot(xs, ys, 'b-', linewidth=1, antialiased=True)
 
    
for mu in (0.7, 0.75, 0.8, 0.9):
    PlotIterate(mu)

for mu in (0.7, 0.75, 0.8, 0.9):
    PlotIterate(mu, Nskip=...)



In this particular case, once the fixed-point goes unstable the motion after many iterations becomes periodic,
repeating itself after two iterations of the map---so  has two new fixed-points. This is called period doubling.
Notice that by the chain rule , and indeed

so the stability of a period-  orbit is determined by the product of the derivatives of  at each point along the orbit.

𝑓(𝑓(𝑥))

𝑑 𝑓(𝑓(𝑥))/𝑑𝑥 = (𝑥) (𝑓(𝑥))𝑓 ′ 𝑓 ′

𝑑 𝑓 [𝑁]

𝑑𝑥
=
𝑑 𝑓(𝑓(… 𝑓(𝑥)…))

𝑑𝑥
= (𝑥) (𝑓(𝑥))… (𝑓(… 𝑓(𝑥)…)),𝑓

′
𝑓
′

𝑓
′

𝑁 𝑓

(b) Analytics: Find the fixed-point  of the map , and show that it exists and is stable for . If
you are ambitious or have a computer algebra program, show that the period-two cycle is stable for

.

(c) Bifurcation diagram: Plot the attractor as a function of , for .. (Pick regularly-spaced , run 
steps, record  steps, and plot. After the routine is working, you should be able to push  and 
both larger than 100, and .) Also on the bifurcation diagram, plot the line  where  reaches its
maximum.

(𝜇)𝑥∗ 𝑓(𝑥) 1/4 < 𝜇 < 3/4

3/4 < 𝜇 < (1 + )/46
⎯⎯

√

𝜇 0 < 𝜇 < 1 𝛿𝜇 𝑁transient
𝑁cycles 𝑁transient 𝑁cycles

𝛿𝜇 < 0.01 𝑥 = 1/2 𝑓(𝑥)
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In [ ]:

In [ ]:

Also plot the attractor for another one-humped map

for . Do the bifurcation diagrams appear similar to one another?
(𝑥) = 𝐵 sin(𝜋𝑥),𝑓sin

0 < 𝐵 < 1

In [ ]:

Notice the complex, structured, chaotic region for large . How do we get from a stable fixed-point  to
chaos? The onset of chaos in this system occurs through a cascade of period doublings. There is the sequence of
bifurcations as  increases---the period-two cycle starting at , followed by a period-four cycle starting at

, period-eight at ---a whole period-doubling cascade. The convergence appears geometrical, to a fixed-point
:

so

and there is a similar geometrical self-similarity along the  axis, with a (negative) scale factor  relating each
generation of the tree.

𝜇 𝜇 < 3/4

𝜇 = 3/4𝜇1
𝜇2 𝜇3
𝜇∞

≈ − 𝐴 ,𝜇𝑛 𝜇∞ 𝛿−𝑛

𝛿 = ( − )/( − )lim
𝑛→∞

𝜇𝑛−1 𝜇𝑛−2 𝜇𝑛 𝜇𝑛−1

𝑥 𝛼

def BifurcationDiagram(etaMin=0., etaMax=1., deltaEta=0.001, g=f, x0=0.49, Nskip=100, Nit
    plt.figure(figsize=(50,20))
    plt.xlim((etaMin,etaMax))
    etaArray = np.arange(etaMin, etaMax, deltaEta)
    etas = []
    trajs = []
    for eta in etaArray:
        etas.extend([eta]*Niter)
        trajs.extend(IterateList(...))
    plt.plot([0.,1.],[0.5,0.5],'g-')
    plt.setp(plt.axes().get_xticklabels(),fontsize=40)
    plt.setp(plt.axes().get_yticklabels(),fontsize=40)
    plt.ylabel('x', fontsize=40)
    plt.xlabel(r'$\eta$', fontsize=40)
    plt.scatter(etas, trajs, marker = '.', s=0.2)

BifurcationDiagram()

BifurcationDiagram(...[Zoom in; decrease deltaEta and increase Nskip until it looks nice]

def fSin(x, B):
    return ...
 
BifurcationDiagram(g=fSin)



In the exercise 'Invariant Measures', we explained the boundaries in the chaotic region as images of . These
special points are also convenient for studying period-doubling. Since  is the maximum in the curve,

. If it were a fixed-point (as it is for ), it would not only be stable, but unusually so: a shift by 
away from the fixed point converges after one step of the map to a distance . We
say that such a fixed-point is superstable. (The superstable points are the values of  in the figure above which
intersect the green line x=1/2.) If we have a period-  orbit that passes through , so that the th iterate

, then the orbit is also superstable, since the derivative of the iterated map is the
product of the derivatives along the orbit, and hence is also zero.

These superstable points happen roughly half-way between the period-doubling bifurcations, and are easier to locate,
since we know that  is on the orbit. Let us use them to investigate the geometrical convergence and self-
similarity of the period-doubling bifurcation diagram from part (d). We will measure both the superstable values of 
and the size of the centermost 'leaf' in the bifurcation diagram (crossed by the line  where  takes its
maximum). For this part and part (h), you will need a routine that finds the roots  for functions  of one
variable .

𝑥 = 1/2

𝑥 = 1/2

(1/2) = 0𝑓 ′ 𝜇 = 1/2 𝜖

𝜖 (1/2) + /2 (1/2) = 𝑂( )𝑓 ′ 𝜖2 𝑓″ 𝜖2

𝜇

𝑁 𝑥 = 1/2 𝑁

(1/2) ≡ 𝑓(… 𝑓(1/2)…) = 1/2𝑓𝑁

𝑥 = 1/2

𝜇

𝑥 = 1/2 𝑓(𝑥)

𝐺(𝑦) = 0 𝐺

𝑦

(d) The Feigenbaum numbers and universality: Numerically, find the values of  at which the -cycle is superstable
(the intersections of the attractor with the green line ), for the first few values of . (Hint: Define a function

, and find the root as a function of . In searching for , you will want to search in a
range  where  works pretty well. Calculate  and  by hand.) Also, find the
separation , the opening between the two edges of the leaf crossed by the maximum of 
(green line above).

𝜇𝑠𝑛 2𝑛

𝑥 = 1/2 𝑛

𝐺(𝜇) = (1/2) − 1/2𝑓
[ ]2𝑛

𝜇 𝜇 𝜇𝑠𝑛+1
( + 𝜖, + ( − )/𝐴)𝜇𝑠𝑛 𝜇𝑠𝑛 𝜇𝑠𝑛 𝜇𝑠𝑛−1 𝐴 ∼ 3 𝜇𝑠0 𝜇𝑠1
1/2 − (1/2, )𝑓 [𝑛−1] 𝜇𝑠𝑛 𝑓



In [ ]:

Calculate the ratios ; do they appear to converge to the Feigenbaum number
? Estimate  by using your last two values of , your last ratio estimate of , and

the equations  and  above. In the superstable orbit with 

( − )/( − )𝜇𝑠𝑛−1 𝜇𝑠𝑛−2 𝜇
𝑠
𝑛 𝜇𝑠𝑛−1

𝛿 = 4.6692016091029909… 𝜇∞ 𝜇𝑠𝑛 𝛿

≈ − 𝐴𝜇𝑛 𝜇∞ 𝛿−𝑛 𝛿 = ( − )/( − )lim𝑛→∞ 𝜇𝑛−1 𝜇𝑛−2 𝜇𝑛 𝜇𝑛−1 2𝑛

def FindSuperstable(g, Niter, etaMin, etaMax, xMax=0.5):
    """
    Finds superstable orbit g^[nIterated](xMax, eta) = xMax
    in range (etaMin, etaMax).
    Must be started with g-xMax of different sign at etaMin, etaMax.
 
    Notice that nIterated will usually be 2^n. (Sorry for using the
    variable n both places!)
 
    Uses optimize.brentq, defining a temporary function, G(eta)
    which is zero for the superstable value of eta.
 
    G iterates g nIterated times and subtracts xMax
    (basically Iterate - xMax, except with only one argument eta)
    """
    def G(eta):
        return Iterate(...)-xMax
    eta_root = brentq(G, etaMin, etaMax)
    return eta_root
 
 
def GetSuperstablePointsAndIntervals(g, eta0, eta1, nMax = 11, xMax=0.5):
    """
    Given the parameters for the first two superstable parameters eta_ss[0]
    and eta_ss[1], finds the next nMax-1 of them up to eta_ss[nMax].
    Returns dictionary eta_ss
 
    Usage:
        Find the value of the parameter eta_ss[0] = eta0 for which the fixed
        point is xMax and g is superstable (g(xMax) = xMax), and the
        value eta_ss[1] = eta1 for which g(g(xMax)) = xMax, either
        analytically or using FindSuperstable by hand.
        mus = GetSuperstablePoints(f, 9, eta0, eta1)
 
    Searches for eta_ss[n] in the range (etaMin, etaMax),
    with etaMin = eta_ss[n-1] + epsilon and
    etaMax = eta_ss[n-1] + (eta_ss[n-1]-eta_ss[n-2])/A
    where A=3 works fine for the maps I've tried.
    (Asymptotically, A should be smaller than but comparable to delta.)
    """
    eps = 1.0e-10
    A = 3.
    eta_ss = {}
    eta_ss[0] = eta0
    eta_ss[1] = eta1
    leafSize = {}
    leafSize[1] = ...
    for n in np.arange(2, nMax+1):
        etaMin = ...
        etaMax = ...
        nIterated = 2**n
        eta_ss[n] = FindSuperstable(...)
        leafSize[n] = Iterate(xMax, 2**(...), eta_ss[n], g)-xMax
    return eta_ss, leafSize
 
mu0 = FindSuperstable(f,1,0.3,1.0,0.5)
mu1 = FindSuperstable(f,2,mu0 + 1.e-6,1.0,0.5)
mus, leafSizes = GetSuperstablePointsAndIntervals(f,mu0,mu1)
 
print(mus)
print(leafSizes)



points, the nearest point to  is . (This is true because, at the previous superstable orbit, 
iterates returned us to the original point .) Calculate the ratios of the amplitudes  at

i l f d th t t th i l l ?

𝑥 = 1/2 (1/2)𝑓 [ ]2𝑛−1 2𝑛−1

𝑥 = 1/2 (1/2) − 1/2𝑓 [ ]2𝑛−1

2 50290787509589284

In [ ]:

Calculate the same ratios for the map ; do  and  appear to be universal (independent of the
mapping)?

(𝑥) = 𝐵 sin(𝜋𝑥)𝑓2 𝛼 𝛿

In [ ]:

The limits  and  are independent of the map, so long as it folds (one hump) with a quadratic maximum. They are the
same, also, for experimental systems with many degrees of freedom which undergo the period-doubling cascade.
This self-similarity and universality suggests that we should look for a renormalization-group explanation.

𝛼 𝛿

(e) Coarse-graining in time. Plot  vs.\  for , together with the line . Notice that the period-two
cycle of  becomes a pair of stable fixed-points for .<\em> (We are coarse-graining in time---removing every
other point in the time series, by studying  rather than .) Compare the plot with that for  vs.\  for

. Notice that the region zoomed in around  for  looks quite a bit like the entire map 
at the smaller value . Plot  at ; notice again the small one-humped map near .

𝑓(𝑓(𝑥)) 𝑥 𝜇 = 0.8 𝑦 = 𝑥

𝑓 𝑓 [2]

𝑓(𝑓(𝑥)) 𝑓 𝑓(𝑥) 𝑥

𝜇 = 0.5 𝑥 = 1/2 = 𝑓(𝑓(𝑥))𝑓 [2] 𝑓

𝜇 = 0.5 (𝑥)𝑓 [4] 𝜇 = 0.875 𝑥 = 1/2

nMax = 11;     # Note: Value of mu for n>9 not reliable
 
def ExponentEstimates(g, eta_ss, leafSizes, xMax=0.5, nMax=nMax):
    """
    Given superstable 2^n cycle values eta_ss[n], calculates
    delta[n] = (eta_{n-1}-eta_{n-2})/(eta_{n}-eta_{n-1})
    and alpha[n] = leafSizes[n-1]/leafSizes[n]
 
    Also extrapolates eta to etaInfinity using definition of delta and
    most reliable value for delta:
    delta = lim{n->infinity} (eta_{n-1}-eta_{n-2})/(eta_n - eta_{n-1})
 
    Returns delta and alpha dictionaries for n>=2, and etaInfinity
    """
    delta = {}
    alpha = {}
    for n in range(2, nMax+1):
        delta[n] = ...
        alpha[n] = ...
    etaInfinity = eta_ss[nMax] + ...
    return delta, alpha, etaInfinity
 
deltas, alphas, muInfinity = ExponentEstimates(f, mus, leafSizes, nMax=11)
 
deltas[nMax], alphas[nMax], muInfinity
 

B0 = FindSuperstable(fSin,1,...)
B1 = FindSuperstable(fSin,2,B0+1.e-6,...)
Bs, leafSizesSin = GetSuperstablePointsAndIntervals(...)
deltaSin, alphaSin, BInfinity = ExponentEstimates(...)
 
deltaSin[nMax], alphaSin[nMax], BInfinity
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The fact that the one-humped map reappears in smaller form just after the period-doubling bifurcation is the basic
reason that succeeding bifurcations so often follow one another. The fact that many things are universal is due to the
fact that the little one-humped maps have a shape which becomes independent of the original map after several
period-doublings.

Let us define this renormalization-group transformation , taking function space into itself. Roughly speaking,  will
take the small upside-down hump in  invert it, and stretch it to cover the interval from . Notice in your
graphs for part (g) that the line  crosses the plot  not only at the two points on the period-two attractor,
but also (naturally) at the old fixed-point  for . This unstable fixed-point plays the role for  that the
origin played for ; our renormalization-group rescaling must map  to the origin. The
corner of the window that maps to  is conveniently located at , since our map happens to be symmetric
about . (For asymmetric maps, we would need to locate this other corner  numerically. As it
happens, breaking this symmetry is irrelevant at the fixed-point.) For a general one-humped map  with fixed-point

 the side of the window is thus of length . To invert and stretch, we must thus rescale by a factor
. Our renormalization-group transformation is thus a mapping  taking function

space into itself, where

(This is just rescaling  to squeeze into the window, applying  twice, shifting the corner of the window to the origin,
and then rescaling by  to fill the original range .)

𝑇 𝑇

𝑓(𝑓(𝑥)), (0, 1)

𝑦 = 𝑥 𝑓(𝑓(𝑥))

[𝑓]𝑥∗ 𝑓(𝑥) 𝑓 [2]

𝑓 ( [𝑓], 𝑓( )) = ( , )𝑥∗ 𝑥∗ 𝑥∗ 𝑥∗

(1, 0) 1 − 𝑥∗

𝑥 = 1/2 𝑓(𝑓( )) =𝑥𝑐 𝑥∗

𝑔(𝑥)

[𝑔]𝑥∗ 2( [𝑔] − 1/2)𝑥∗

𝛼[𝑔] = −1/(2( [𝑔] − 1/2))𝑥∗ 𝑇 [𝑔]

𝑇 [𝑔](𝑥) = 𝛼[𝑔] (𝑔 (𝑔(𝑥/𝛼[𝑔] + [𝑔])) − [𝑔]) .𝑥∗ 𝑥∗

𝑥 𝑔

𝛼 (0, 1) × (0, 1)

(f) Scaling and the renormalization group: Write routines that calculate  and , and define the renormalization-
group transformation . Plot , ,... and compare them. Are we approaching a fixed-point  in
function space?

[𝑔]𝑥∗ 𝛼[𝑔]

𝑇 [𝑔] 𝑇 [𝑓] 𝑇 [𝑇 [𝑓]] 𝑓∗

plt.figure()
plt.axes().set_aspect('equal')
x = np.arange(0.,1.,0.01)
plt.plot(...)
plt.plot(...)
plt.title('mu='+str(0.8))
 
plt.figure()
plt.axes().set_aspect('equal')
plt.plot(x,f(x,0.5))
plt.plot(x,x)
plt.title('mu='+str(0.5))
 
plt.figure()
plt.axes().set_aspect('equal')
plt.plot(...)
plt.plot(...)
plt.title('mu='+str(0.875))



In [ ]: def XStar(g, mu):
    """
    Finds fixed point of one-humped map g, which is assumed to be
    between xMax and 1.0.
    """
    def gXStar(x,mu): return ...
    return brentq(gXStar, 1/2, 1.0, args=(mu,))
 
def Alpha(g, mu):
    """
    Finds the (negative) scale factor alpha which inverts and rescales
    the small inverted region of g(g(x)) running from (1-x*) to x*.
    """
    gWindowMax = XStar(g, mu)
    gWindowMin = ...
    return 1.0/(gWindowMin-gWindowMax)
 
class T:
    """
    Creates a new function T[g] from g, implementing Feigenbaum's
    renormalization-group transformation of function space into itself.
 
    We define it as a class so that we can initialize alpha and xStar,
    which otherwise would need to be recalculated each time T[g] was
    evaluated at a point x.
 
    Usage:
        Tg = T(g, args)
        Tg(x) evaluates the function at x
    """
    def __init__(self, g, mu):
        """
        Stores g and args.
        Calculates and stores xStar and alpha.
        """
        self.mu = mu
        self.xStar = XStar(g, mu)
        self.alpha = Alpha(g, mu)
        self.g = g
 
    def __call__(self, x, mu):
        """
        Defines xShrunk to be x/alpha + x*
        Evaluates g2 = g(g(xShrunk))
        Returns expanded alpha*(g2-xStar)
        """
        xShrunk = .../self....+ self....
        g2 = self.g(self.g(...), ...)
        return ... * (g2 - ...)



In [ ]:

This explains the self-similarity; in particular, the value of  as  iterates to  becomes the Feigenbaum number𝛼[𝑔] 𝑔 𝑓∗

𝛼 = −2.5029…

(g) Universality and the renormalization group: Using the sine function above, compare  to  at their
onsets of chaos. Are they approaching the same fixed-point?

𝑇 [𝑇 [ ]]𝑓sin 𝑇 [𝑇 [𝑓]]

In [ ]:

By using this rapid convergence in function space, one can prove both that there will (often) be an infinite geometrical
series of period-doubling bifurcations leading to chaos, and that this series will share universal features (exponents 
and  and features) that are independent of the original dynamics.

𝛼

𝛿

def PlotTIterates(g, mu, nMax = 2):
    """
    Plots g(x), T[g](x), T[T[g]](x) ...
    on the same plot, for x from (0,1)
    """
    plt.figure(figsize=(10,10))
    plt.axes().set_aspect('equal')
    xs = np.arange(0.01, 1., 0.01)
    plt.plot(xs,xs)
    Tg = {}
    Tg[0] = lambda x, mu: g(x, mu)
    for n in range(1,nMax+1):
        Tg[n] = T(Tg[n-1], mu=mu)
 
    for n in range(nMax+1):
        plt.plot(xs, Tg[n](xs,mu))
 
PlotTIterates(f,muInfinity,nMax=3)

plt.figure(figsize=(10,10))
plt.axes().set_aspect('equal')
xs = np.arange(0.001, 1., 0.01)
plt.plot(xs,xs)
T2F = T(T(f, mu=muInfinity),mu=muInfinity)
plt.plot(xs,T2F(xs,muInfinity),"r-")
T2Fsin = T(T(fSin, mu=BInfinity),mu=BInfinity)
plt.plot(xs,T2Fsin(xs,BInfinity),"g-");


