The onset of chaos: Full renormalization-group
calculation

(Sethna, “Entropy, Order Parameters, and Complexity”, ex. 12.XXX)
© 2017, James P. Sethna, all rights reserved.

In this exercise, we implement Feigenbaum’s numerical scheme for finding high-precision values of the
universal constants
= -2.50290787509589282228390287322
0 =4.66920160910299067185320382158,
that quantify the scaling properties of the period-doubling route to chaos (Fig. 12.17}, Exercise ‘Period
doubling’). This extends the lowest-order calculation of the companion Exercise ‘The onset of chaos:
Lowest order renormalization-group for period doubling’}.

aFeigenbaum = -2.502907875095892822283902873218;
&Feigenbaum = 4.669201609102990671853203821578;

Our renormalization group operation (Exercises ‘Period doubling and the renormalization group’ and the
companion Exercise) coarse-grains in time taking g—-geg, and then rescales distance x by a factor of a.
Centering our functions at x=0, this leads to

Tlgl(x) = a g(g(x/a)).
We shall solve for the properties at the onset of chaos by analyzing our function-space renormalization-
group by expanding our functions in a power series

gx) =1 + 2N,.1 G, X*".
Notice that we only keep even powers of x; the fixed point is known to be symmetric about the maxi-
mum, and the unstable mode responsible for the exponent ¢ will also be symmetric.

(* N us a reserved variable; use Nn instead =)
g[Nn_1[x_] := 1+Sum[..., {n, 1, Nn}]
Tig_1[x_] = a .
(* We'll also want the derivative of g later)
Dg[Nn_1[x_]1 = Sum[..., {...}]
(* Test your functions by plotting

them.G=[-1.5,0,0,...] should give T[g] close to g *)
GO[1] := -3/2
GO[n_] =0 /; n#1
Plot[{g[2][x], T[g[2]11[x] /. {a»1/gl[2][1]}} /. G- GO, {x, 0, 2}]
First, we must approximate the fixed point g*(x) and the corresponding value of the universal constant
a. At order N, we must solve for a and the N polynomial coefficients G*,. We can use the N+1 equa-
tions fixing the function at equally spaced points in the positive unit interval:

Tlg*] (Xm)=g*(Xm), Xm=m/N, m={0,...,N}.

We can use the first of these equations to solve for a.

2 | PeriodDoublingNumericalRGHintsMathematica.nb

(a) Show that the equation for m=0 sets a = 1/g*(1).
We can use a root-finding routine to solve for G*,,.

(b) Implement the other N constraint equations above in a form appropriate for your method of finding
roots of nonlinear equations, substituting your value for a from part (a). Check that your routine at N=1
gives values for a=-2.5 and Gx+1=-1.5. (These should reproduce the values from the companion Exer-
cise part (¢).)
Nmax = 20;
For[Nn =1, Nn <= Nmax, Nn=Nn+1,
xm = Range[...];
vars = Table[{G[n], GO[Nn]}, {...}]}

eqns = Table[... =.../. a>1/g[Nn][1], {x, xm}];
GStar[Nn] = FindRoot[..., WorkingPrecision - 50];
a[Nn] = ...] /. GStar[Nn]]

Table[{Nn, ...}, {Nn, 1, Nmax}] // MatrixForm

Table[{Nn, aFeigenbaum - ...

Now we need to solve for the renormalization group flows T[g], linearized about the fixed point
g(x)=g*(x)+ew(x). Feigenbaum tells us that T[g*+ew]=T[g+]+eL[y], where L is the linear operator
taking y(x) to

L[yl(x) = a y(g*(x/a)) + a g*(g(x/a)) y(x/a).

(d) Derive the equation above.

ANSWER HERE

We want to find eigenfunctions that satisfy L[@]=Ay. Again, we can expand (x) in a polynomial

W) =" wn X" (o= 1)
We then approximate the action of £ on by its action at N points x;, that need not be the same as the
N points x,, we used to find g=. We shall use x; = (i-1)/((N-1), i=1,...,N. (For N=1, we use x4=0.) This
leads us to a linear system of N equations for the coefficients y,,, using the previous two equations.
SN o [g(xi/ @M +a g (g(xila)) (i @)™ wn = A M o X2 g,
These equations for the coefficients y, of the eigenfunctions of & is in the form of a generalized eigen-
value problem
ZN_1n=O Linwn=A ZN_1n=0 Xin Yn.
The solution to the generalized eigenvalue problem can be found from the eigenvalues of X~'L, but
most eigenvalue routines provide a more efficient and accurate option for directly solving the general-
ized equation given L and X.
(e) Write a routine that calculates the matrices L and X implicitly defined by the previous two equations.
For N=1 you should generate 1x1 matrices. For N=1, what is your prediction for 6? (These should
reproduce the values from the companion Exercise part (d).)

PeriodDoublingNumericalRGHintsMathematica.nb | 3

(* Make sure your matrix hasn't transposed rows (1)

and columns (n).Each row should give powers of one x_i. =)

(* Avoid 070 for N=1 by using 'Evaluate' to set up n=0 column in X %)
xtildes[Nn_] := Range[0, 1,1/ (Nn-1)]

xtildes[1l] := {0.}

X[Nn_] := Table[Evaluate[Table[..., {n, ®, Nn-1}]1], {xtilde, xtildes[Nn]}]
X[1]

X[3]

L[Nn_] :=

Table[Evaluate[Table[a[Nn] g[...]1”*(...) +a[Nn]1Dg[...] (...)"(...) /. GStar[Nn],
{n, 0, Nn-1}]1], {xtilde, xtildes[Nn]}]

L[1]

L[3] // MatrixForm

Eigenvalues[{L[3], X[3]}]

Nmax = 20;

For[Nn =1, Nn <= Nmax, Nn=Nn+1,
eigvals = ...[{L[Nn], X[Nn]}]1;
6[Nn] = eigvals[[1l]]]

Table[...] //

Table[...] //

