
���
�����������

���
©��

In this exercise, we implement Feigenbaum’s numerical scheme for finding high-precision values of the

universal constants
 α = -2.50290787509589282228390287322
 δ = 4.66920160910299067185320382158,
that quantify the scaling properties of the period-doubling route to chaos (Fig. 12.17}, Exercise ‘Period

doubling’). This extends the lowest-order calculation of the companion Exercise ‘The onset of chaos:
Lowest order renormalization-group for period doubling’}.

αFeigenbaum = -2.502907875095892822283902873218;
δFeigenbaum = 4.669201609102990671853203821578;

Our renormalization group operation (Exercises ‘Period doubling and the renormalization group’ and the

companion Exercise) coarse-grains in time taking g→g∘g, and then rescales distance x by a factor of α.
Centering our functions at x=0, this leads to

 T[g](x) = α g(g(x/α)).
We shall solve for the properties at the onset of chaos by analyzing our function-space renormalization-
group by expanding our functions in a power series
 g(x) ≈ 1 + ΣNn=1Gn x2 n.
Notice that we only keep even powers of x; the fixed point is known to be symmetric about the maxi-
mum, and the unstable mode responsible for the exponent δ will also be symmetric.

(* N us a reserved variable; use Nn instead *)

g[Nn_][x_] := 1 + Sum[..., {n, 1, Nn}]
T[g_][x_] := α ...
(* We'll also want the derivative of g later *)

Dg[Nn_][x_] := Sum[..., { ...}]
(* Test your functions by plotting

them.G=[-1.5,0,0,...] should give T[g] close to g *)

G0[1] := -3  2

G0[n_] := 0 /; n ≠ 1

Plotg[2][x], T[g[2]][x] /. α → 1  g[2][1] /. G → G0, {x, 0, 2}

First, we must approximate the fixed point g*(x) and the corresponding value of the universal constant
α. At order N, we must solve for α and the N polynomial coefficients G*

n. We can use the N+1 equa-
tions fixing the function at equally spaced points in the positive unit interval:
 T [g*] (xm)=g*(xm), xm=m/N, m={0,…,N}.
We can use the first of these equations to solve for α.

(a) Show that the equation for m=0 sets α = 1/g*(1).

We can use a root-finding routine to solve for G*
n.

(b) Implement the other N constraint equations above in a form appropriate for your method of finding

roots of nonlinear equations, substituting your value for α from part (a). Check that your routine at N=1

gives values for α≈-2.5 and G�1≈-1.5. (These should reproduce the values from the companion Exer-
cise part (c).)

Nmax = 20;

ForNn = 1, Nn <= Nmax, Nn = Nn + 1,

xm = Range[...];
vars = Table[{G[n], G0[n]}, { ...}];

eqns = Table ... ⩵ ... /. α → 1  g[Nn][1], {x, xm};

GStar[Nn] = FindRoot[..., WorkingPrecision → 50];

α[Nn] = ... /. GStar[Nn]

Table[{Nn, ...}, {Nn, 1, Nmax}] // MatrixForm
Table[{Nn, αFeigenbaum - ...

Now we need to solve for the renormalization group flows T[g], linearized about the fixed point
g(x)=g*(x)+ϵψ(x). Feigenbaum tells us that T[g*+ϵψ]=T[g�]+ϵℒ[ψ], where ℒ is the linear operator
taking ψ(x) to
 ℒ[ψ](x) = α ψ(g*(x/α)) + α g*’(g(x/α)) ψ(x/α).

(d) Derive the equation above.

ANSWER HERE

We want to find eigenfunctions that satisfy ℒ[ψ]=λψ. Again, we can expand ψ(x) in a polynomial
 ψ (x) = ∑N-1n=0 ψn x

2 n
 (ψ0 ≡ 1).

We then approximate the action of ℒ on ψ by its action at N points x̃ i, that need not be the same as the

N points xm we used to find g�. We shall use x̃ i = (i-1)/(N-1), i=1,…,N. (For N=1, we use x̃ 1=0.) This
leads us to a linear system of N equations for the coefficients ψn, using the previous two equations.

∑N-1n=0 [α g(x̃ i α)
2 n+α g’(g(x̃ i/α)) (x̃ i α)

2 n]ψn = λ ∑N-1n=0 x̃
2 n
iψn

These equations for the coefficients ψn of the eigenfunctions of E2
38 is in the form of a generalized eigen-

value problem
∑N-1n=0 Linψn = λ ∑N-1n=0 Xinψn.
The solution to the generalized eigenvalue problem can be found from the eigenvalues of X-1L, but
most eigenvalue routines provide a more efficient and accurate option for directly solving the general-
ized equation given L and X.
(e) Write a routine that calculates the matrices L and X implicitly defined by the previous two equations.
For N=1 you should generate 1×1 matrices. For N=1, what is your prediction for δ? (These should

reproduce the values from the companion Exercise part (d).)

2 ��� PeriodDoublingNumericalRGHintsMathematica.nb

(* Make sure your matrix hasn't transposed rows i

and columns (n).Each row should give powers of one x_i. *)

(* Avoid 0^0 for N=1 by using 'Evaluate' to set up n=0 column in X *)

xtildes[Nn_] := Range0, 1, 1  Nn - 1

xtildes[1] := {0.}
X[Nn_] := Table[Evaluate[Table[..., {n, 0, Nn - 1}]], {xtilde, xtildes[Nn]}]
X[1]
X[3]

L[Nn_] :=
Table[Evaluate[Table[α[Nn] g[...]^(...) + α[Nn] Dg[...] (...)^(...) /. GStar[Nn],

{n, 0, Nn - 1}]], {xtilde, xtildes[Nn]}]
L[1]
L[3] // MatrixForm
Eigenvalues[{L[3], X[3]}]

Nmax = 20;
For[Nn = 1, Nn <= Nmax, Nn = Nn + 1,
eigvals = ...[{L[Nn], X[Nn]}];
δ[Nn] = eigvals[[1]]]

Table[...] // ...
Table[...] // ...

PeriodDoublingNumericalRGHintsMathematica.nb ���3

