
The onset of chaos: Full renormalization-group
calculation
(Sethna, "Entropy, Order Parameters, and Complexity", ex. 12.30)

© 2017, James Sethna, all rights reserved.

In this exercise, we implement Feigenbaum's numerical scheme for finding high-precision
values of the universal constants

that quantify the scaling properties of the period-doubling route to chaos (Fig. 12.17, Exercise
'Period doubling'). This extends the lowest-order calculation of the companion Exercise 12.29
'The onset of chaos: Lowest order renormalization-group for period doubling'}.

Import packages

𝛼

𝛿

= −2.50290787509589282228390287322

= 4.66920160910299067185320382158,

In []:

Our renormalization group operation (Exercises 'Period doubling and the renormalization
group' and the companion Exercise 12.29) coarse-grains in time taking , and then
rescales distance by a factor of . Centering our functions at , this leads to

.

We shall solve for the properties at the onset of chaos by analyzing our function-space
renormalization-group by expanding our functions in a power series

Notice that we only keep even powers of ; the fixed point is known to be symmetric about
the maximum, and the unstable mode responsible for the exponent will also be symmetric.

𝑔 → 𝑔 ∘ 𝑔

𝑥 𝛼 𝑥 = 0

𝑇 [𝑔](𝑥) = 𝛼𝑔 (𝑔(𝑥/𝛼))

𝑔(𝑥) ≈ 1 + .∑
𝑛=1

𝑁

𝐺𝑛𝑥
2𝑛

𝑥

𝛿

Sometimes gives interactive new windows
Must show() after plot, figure() before new plot
%matplotlib

Adds static figures to notebook: good for printing
%matplotlib inline

Interactive windows inside notebook! Must include plt.figure() betwee
%matplotlib notebook

Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import root
from scipy.linalg import eig

alphaFeigenbaum = -2.502907875095892822283902873218
deltaFeigenbaum = 4.669201609102990671853203821578

In []:

First, we must approximate the fixed point and the corresponding value of the universal
constant . At order , we must solve for and the polynomial coefficients . We can
use the equations fixing the function at equally spaced points in the positive unit
interval:

We can use the first of these equations to solve for .

(a) Show that the equation for sets .

We can use a root-finding routine to solve for .

(b) Implement the other constraint equations above in a form appropriate for your method
of finding roots of nonlinear equations, substituting your value for from part (a). Check that
your routine at gives values for and . (These should reproduce
the values from the companion Exercise 12.29 part (c).)

(𝑥)𝑔∗

𝛼 𝑁 𝛼 𝑁 𝐺∗𝑛
𝑁 + 1

𝑇 []() = (), = 𝑚/𝑁, 𝑚 = {0,… ,𝑁}.𝑔∗ 𝑥𝑚 𝑔∗ 𝑥𝑚 𝑥𝑚
𝛼

𝑚 = 0 𝛼 = 1/ (1)𝑔∗

𝐺∗𝑛

𝑁

𝛼

𝑁 = 1 𝛼 ≈ −2.5 ≈ −1.5𝐺∗1

def g(G,x):
 """
 Returns 1 + G[0] x^2 + G[1] x^4 + ..., where G_n = G[n-1]...
 We will sometimes call g with a whole array of x-values.
 """
 # enumerate(G) = [[0,G[0]], [1,G[1]], ...], conveniently giving n-1...
 # enumerate(G,1) starts the numbering at one
 # sum(M) adds up all the entries of a matrix. This is OK if x is a
 # array [x1,x2,...] we want an array of values [g(x1),g(x2),...]. s... ...
 return 1.+np.sum([...... for n,Gn in enumerate(G,1)],axis=0)

def T(g,G,x,alpha=None):
 """
 Returns renormalization-group transform T[g](x).
 If alpha is not known, calculate it from g using your result from (
 """
 if alpha is None:
 alpha =
 return

def Dg(G,x):
 """
 Returns g'(x)
 """
 return np.sum(......,axis=0)

Test your functions by plotting them. G = [-1.5, 0, 0, ...] should gi...
x = np.arange(0,2,0.01)
plt.plot(x,g([-1.5,0.],x))
plt.plot(x,T(g,[-1.5,0],x))

In []:

(c) Use a root-finding routine to calculate for . Start the search at ,
 () to avoid landing at the wrong fixed point. (If it is convenient for you to use

high-precision arithmetic, continue to higher .) To how many decimal places can you
reproduce the correct value for at the beginning of this exercise?

𝛼 𝑁 = 1,… , 9 = −1.5𝐺∗1
= 0𝐺∗𝑛 𝑛 > 1

𝑁

𝛼

In []:

Now we need to solve for the renormalization group flows , linearized about the fixed
point . Feigenbaum tells us that ,
where is the linear operator taking to

(d) Derive the equation above.

𝑇 [𝑔]

𝑔(𝑥) = (𝑥) + 𝜖𝜓(𝑥)𝑔∗ 𝑇 [+ 𝜖𝜓] = 𝑇 [] + 𝜖[𝜓]𝑔∗ 𝑔∗

 𝜓(𝑥)

[𝜓](𝑥) = 𝛼𝜓((𝑥/𝛼)) + 𝛼 (𝑔(𝑥/𝛼))𝜓(𝑥/𝛼).𝑔∗ 𝑔∗
′

[Answer here]

We want to find eigenfunctions that satisfy . Again, we can expand in a
polynomial

[𝜓] = 𝜆𝜓 𝜓(𝑥)

def toZero(G):
 """Returns T[g](x) - g(x) for N points [1/N,2/N,...,1], given N ter...
 N = len(G)
 x = np.linspace(......)
 return

Check that your return gives a sensible value for the difference of T
print(toZero([-1.5]))

Use root to find the best solution for N=1. The values giving zero is
G1 = root(......,[-1.5]).x

What do we get for alpha[1]?
1/......

Fill dictionary with your values of alpha[N] for N = 1...9...
Also keep your values for the fixed point function Gstar[N]
for use in calculating delta
alpha = {}
Gstar =
Nmax = 15
for N in range(1,Nmax):
 G0 = np.zeros(N)
 G0[0]=-1.5
 Gstar[N] = root(......).x
 alpha[N] =

Print out your alphas
print(np.array([(N,......) for N in range(1,Nmax)]))

Calculate how far they deviate from alphaFeigenbaum
[(N,alphaFeigenbaum-......) for]

We then approximate the action of on by its action at points , that need not be the
same as the points we used to find . We shall use ,

. (For , we use .) This leads us to a linear system of equations
for the coefficients , using the previous two equations.

These equations for the coefficients of the eigenfunctions of is in the form of a
generalized eigenvalue problem

The solution to the generalized eigenvalue problem can be found from the eigenvalues of
, but most eigenvalue routines provide a more efficient and accurate option for directly

solving the generalized equation given and .

(e) Write a routine that calculates the matrices and implicitly defined by the previous two
equations. For you should generate matrices. For , what is your
prediction for ? (These should reproduce the values from the companion Exercise 12.29 part
(d))

𝜓(𝑥) = (≡ 1).∑
𝑛=0

𝑁−1

𝜓𝑛𝑥
2𝑛 𝜓0

 𝜓 𝑁 𝑥 ̃ 𝑖
𝑁 𝑥𝑚 𝑔∗ = (𝑖 − 1)/(𝑁 − 1)𝑥 ̃ 𝑖

𝑖 = 1,… ,𝑁 𝑁 = 1 = 0𝑥 ̃ 1 𝑁

𝜓𝑛

[𝛼𝑔(/𝛼 + 𝛼 (𝑔(/𝛼))(/𝛼] = 𝜆∑
𝑛=0

𝑁−1

𝑥 ̃ 𝑖)
2𝑛 𝑔′ 𝑥 ̃ 𝑖 𝑥 ̃ 𝑖)

2𝑛 𝜓𝑛 ∑
𝑛=0

𝑁−1

𝑥 ̃ 2𝑛𝑖 𝜓𝑛

𝜓𝑛

= 𝜆 .∑
𝑛

𝐿𝑖𝑛𝜓𝑛 ∑
𝑛

𝑋𝑖𝑛𝜓𝑛

𝐿𝑋−1

𝐿 𝑋

𝐿 𝑋

𝑁 = 1 1 × 1 𝑁 = 1

𝛿

In []:

(f) Solve the generalized eigenvalue problem for and for . To how many
decimal places can you reproduce the correct value for at the beginning of this exercise?

𝐿 𝑋 𝑁 = 1,… , 9

𝛿

def X(N):
 """Returns X_{in} = xtilde_i**(2n)"""
 # Make sure your matrix hasn't transposed rows (i) and columns (n).
 xtildes = np.linspace(0.,1.,N)
 return np.array([[...... for n in range(N)] for xtilde in xtildes])

print(X(1))
print(X(3))

def Ln(xtildes,n,alpha,G):
 """Returns one column of L, given the array of xtilde values"""
 return alpha*g(......)**(......) + alpha*Dg(......)*(......)**(......)

Test Ln on the one-element column for N=1: does it give a reasonable
print('delta[1] should be the entry in ', Ln(np.array([0.]),0,alpha[1],

def L(N):
 """Builds an array Lin from the columns Ln"""
 # Again, make sure your matrix has rows (i) and columns (n). You ma
 xtildes =
 return np.array([Ln(......) for n in range(N)]).transpose()

print(L(1))

print(L(3))

eig(L(3),X(3))

In []: # Fill dictionary with your values of alpha[N] for N = 1...9...
delta = {}
Nmax = 15
for N in range(1,Nmax):
 eigvals, eigvecs =
 delta[N] = np.real(eigvals[0])

Print out your deltas
print(np.array([(......) for N in]))

Calculate how far they deviate from deltaFeigenbaum
[(N,......) for N in range(1,Nmax)]

