## The onset of chaos: Full renormalization-group calculation

(Sethna, "Entropy, Order Parameters, and Complexity", ex. 12.30)
© 2017, James Sethna, all rights reserved.

In this exercise, we implement Feigenbaum's numerical scheme for finding high-precision values of the universal constants

$$
\begin{aligned}
& \alpha=-2.50290787509589282228390287322 \\
& \delta=4.66920160910299067185320382158,
\end{aligned}
$$

that quantify the scaling properties of the period-doubling route to chaos (Fig. 12.17, Exercise 'Period doubling'). This extends the lowest-order calculation of the companion Exercise 12.29 'The onset of chaos: Lowest order renormalization-group for period doubling'\}.

Import packages

In [ ]:

```
# Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib
# Adds static figures to notebook: good for printing
%matplotlib inline
# Interactive windows inside notebook! Must include plt.figure() betwe\epsilon
# omatplotlib notebook
# Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import root
from scipy.linalg import eig
alphaFeigenbaum = -2.502907875095892822283902873218
deltaFeigenbaum = 4.669201609102990671853203821578
```

Our renormalization group operation (Exercises 'Period doubling and the renormalization group' and the companion Exercise 12.29) coarse-grains in time taking $g \rightarrow g \circ g$, and then rescales distance $x$ by a factor of $\alpha$. Centering our functions at $x=0$, this leads to $T[g](x)=\alpha g(g(x / \alpha))$.

We shall solve for the properties at the onset of chaos by analyzing our function-space renormalization-group by expanding our functions in a power series

$$
g(x) \approx 1+\sum_{n=1}^{N} G_{n} x^{2 n}
$$

Notice that we only keep even powers of $x$; the fixed point is known to be symmetric about the maximum, and the unstable mode responsible for the exponent $\delta$ will also be symmetric.

In

```
def g(G,x):
    Returns 1 + G[0] x^2 + G[1] x^4 + ..., where G_n = G[n-1]
    We will sometimes call g with a whole array of x-values.
    """"
    # enumerate(G) = [[0,G[0]], [1,G[1]], ...], conveniently giving n-]
    # enumerate(G,1) starts the numbering at one
    # sum(M) adds up all the entries of a matrix. This is OK if x is a
    # array [x1,x2,...] we want an array of values [g(x1),g(x2),...]. s
    return 1.+np.sum([... for n,Gn in enumerate(G,1)],axis=0)
def T(g,G,x,alpha=None):
    Returns renormalization-group transform T[g](x).
    If alpha is not known, calculate it from g using your result from
    """"
    if alpha is None:
        alpha = ...
    return ...
def Dg(G,x):
    ||II
    Returns g'(x)
    """"
    return np.sum(...,axis=0)
# Test your functions by plotting them. G = [-1.5, 0, 0, ...] should g]
x = np.arange(0,2,0.01)
plt.plot(x,g([-1.5,0.],x))
plt.plot(x,T(g,[-1.5,0],x))
```

First, we must approximate the fixed point $g^{*}(x)$ and the corresponding value of the universal constant $\alpha$. At order $N$, we must solve for $\alpha$ and the $N$ polynomial coefficients $G_{n}^{*}$. We can use the $N+1$ equations fixing the function at equally spaced points in the positive unit interval:

$$
T\left[g^{*}\right]\left(x_{m}\right)=g^{*}\left(x_{m}\right), \quad x_{m}=m / N, m=\{0, \ldots, N\} .
$$

We can use the first of these equations to solve for $\alpha$.
(a) Show that the equation for $m=0$ sets $\alpha=1 / g^{*}(1)$.

We can use a root-finding routine to solve for $G_{n}^{*}$.
(b) Implement the other $N$ constraint equations above in a form appropriate for your method of finding roots of nonlinear equations, substituting your value for $\alpha$ from part (a). Check that your routine at $N=1$ gives values for $\alpha \approx-2.5$ and $G_{1}^{*} \approx-1.5$. (These should reproduce the values from the companion Exercise 12.29 part (c).)

```
def toZero(G):
    """'Returns T[g](x) - g(x) for N points [1/N,2/N,...,1], given N ter
    N = len(G)
    x = np.linspace(...)
    return ...
# Check that your return gives a sensible value for the difference of }
print(toZero([-1.5]))
# Use root to find the best solution for N=1. The values giving zero is
G1 = root(...,[-1.5]).x
# What do we get for alpha[1]?
1/...
```

(c) Use a root-finding routine to calculate $\alpha$ for $N=1, \ldots, 9$. Start the search at $G_{1}^{*}=-1.5$, $G_{n}^{*}=0(n>1)$ to avoid landing at the wrong fixed point. (If it is convenient for you to use high-precision arithmetic, continue to higher $N$.) To how many decimal places can you reproduce the correct value for $\alpha$ at the beginning of this exercise?

In [ ]: \# Fill dictionary with your values of alpha[N] for N = 1...9
\# Also keep your values for the fixed point function Gstar[N]
\# for use in calculating delta
alpha = \{\}
Gstar = ...
Nmax $=15$
for $N$ in range(1,Nmax):
G0 = np.zeros(N)
G0 [0] =-1. 5
Gstar[N] = root(...).x
alpha[N] = ...
\# Print out your alphas
print(np.array([(N,...) for $N$ in range(1,Nmax)]))
\# Calculate how far they deviate from alphaFeigenbaum
[(N,alphaFeigenbaum-...) for ...]

Now we need to solve for the renormalization group flows $T[g]$, linearized about the fixed point $g(x)=g^{*}(x)+\epsilon \psi(x)$. Feigenbaum tells us that $T\left[g^{*}+\epsilon \psi\right]=T\left[g^{*}\right]+\epsilon \mathcal{L}[\psi]$, where $\mathcal{L}$ is the linear operator taking $\psi(x)$ to

$$
\mathcal{L}[\psi](x)=\alpha \psi\left(g^{*}(x / \alpha)\right)+\alpha g^{* \prime}(g(x / \alpha)) \psi(x / \alpha) .
$$

(d) Derive the equation above.
[Answer here]

We want to find eigenfunctions that satisfy $\mathcal{L}[\psi]=\lambda \psi$. Again, we can expand $\psi(x)$ in a polynomial

$$
\psi(x)=\sum_{n=0}^{N-1} \psi_{n} x^{2 n} \quad\left(\psi_{0} \equiv 1\right)
$$

We then approximate the action of $\mathcal{L}$ on $\psi$ by its action at $N$ points $\tilde{x}_{i}$, that need not be the same as the $N$ points $x_{m}$ we used to find $g^{*}$. We shall use $\tilde{x}_{i}=(i-1) /(N-1)$, $i=1, \ldots, N$. (For $N=1$, we use $\tilde{x}_{1}=0$.) This leads us to a linear system of $N$ equations for the coefficients $\psi_{n}$, using the previous two equations.

$$
\sum_{n=0}^{N-1}\left[\alpha g\left(\tilde{x}_{i} / \alpha\right)^{2 n}+\alpha g^{\prime}\left(g\left(\tilde{x}_{i} / \alpha\right)\right)\left(\tilde{x}_{i} / \alpha\right)^{2 n}\right] \psi_{n}=\lambda \sum_{n=0}^{N-1} \tilde{x}_{i}^{2 n} \psi_{n}
$$

These equations for the coefficients $\psi_{n}$ of the eigenfunctions of $\mathcal{L}$ is in the form of a generalized eigenvalue problem

$$
\sum_{n} L_{i n} \psi_{n}=\sum_{n} \lambda X_{i n} \psi_{n} .
$$

The solution to the generalized eigenvalue problem can be found from the eigenvalues of $X^{-1} L$, but most eigenvalue routines provide a more efficient and accurate option for directly solving the generalized equation given $L$ and $X$.
(e) Write a routine that calculates the matrices $L$ and $X$ implicitly defined by the previous two equations. For $N=1$ you should generate $1 \times 1$ matrices. For $N=1$, what is your prediction for $\delta$ ? (These should reproduce the values from the companion Exercise 12.29 part

In [ ]:

```
def X(N):
    """"Returns X_{in} = xtilde_i**(2n)""""
    # Make sure your matrix hasn't transposed rows (i) and columns (n).
    xtildes = np.linspace(0.,1.,N)
    return np.array([[... for n in range(N)] for xtilde in xtildes])
print(X(1))
print(X(3))
def Ln(xtildes,n,alpha,G):
    """Returns one column of L, given the array of xtilde values""""
    return alpha*g(...)**(...) + alpha*Dg(...)*(...)**(...)
# Test Ln on the one-element column for N=1: does it give a reasonable
print('delta[1] should be the entry in ', Ln(np.array([0.]),0,alpha[1],
def L(N):
    """"Builds an array Lin from the columns Ln""""
    # Again, make sure your matrix has rows (i) and columns (n). You ma
    xtildes = ...
    return np.array([Ln(...) for n in range(N)]).transpose()
print(L(1))
print(L(3))
eig(L(3),X(3))
```

(f) Solve the generalized eigenvalue problem for $L$ and $X$ for $N=1, \ldots, 9$. To how many decimal places can you reproduce the correct value for $\delta$ at the beginning of this exercise?

In [ ]: \# Fill dictionary with your values of alpha[N] for N = 1...9 delta = \{\}
Nmax $=15$
for $N$ in range(1,Nmax):
eigvals, eigvecs = ...
delta[N] = np. real(eigvals[0])
\# Print out your deltas
print(np.array([(...) for $N$ in ...]))
\# Calculate how far they deviate from deltaFeigenbaum
[(N,...) for $N$ in range(1,Nmax)]

