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In this exercise, we implement Feigenbaum's numerical scheme for finding high-precision
values of the universal constants

that quantify the scaling properties of the period-doubling route to chaos (Fig. 12.17, Exercise
'Period doubling'). This extends the lowest-order calculation of the companion Exercise 12.29
'The onset of chaos: Lowest order renormalization-group for period doubling'}.

Import packages

𝛼

𝛿

= −2.50290787509589282228390287322

= 4.66920160910299067185320382158,

In [ ]:

Our renormalization group operation (Exercises 'Period doubling and the renormalization
group' and the companion Exercise 12.29) coarse-grains in time taking , and then
rescales distance  by a factor of . Centering our functions at , this leads to

.

We shall solve for the properties at the onset of chaos by analyzing our function-space
renormalization-group by expanding our functions in a power series

Notice that we only keep even powers of ; the fixed point is known to be symmetric about
the maximum, and the unstable mode responsible for the exponent  will also be symmetric.
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# Sometimes gives interactive new windows
# Must show() after plot, figure() before new plot
# %matplotlib
 
# Adds static figures to notebook: good for printing
%matplotlib inline 
 
# Interactive windows inside notebook! Must include plt.figure() betwee
# %matplotlib notebook
 
# Better than from numpy import *, but need np.sin(), np.array(), plt.p
import numpy as np 
import matplotlib.pyplot as plt
from scipy.optimize import root
from scipy.linalg import eig
 
alphaFeigenbaum = -2.502907875095892822283902873218
deltaFeigenbaum = 4.669201609102990671853203821578



In [ ]:

First, we must approximate the fixed point  and the corresponding value of the universal
constant . At order , we must solve for  and the  polynomial coefficients . We can
use the  equations fixing the function at equally spaced points in the positive unit
interval:

We can use the first of these equations to solve for .

(a) Show that the equation for  sets .

We can use a root-finding routine to solve for .

(b) Implement the other  constraint equations above in a form appropriate for your method
of finding roots of nonlinear equations, substituting your value for  from part (a). Check that
your routine at  gives values for  and . (These should reproduce
the values from the companion Exercise 12.29 part (c).)
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def g(G,x):
    """
    Returns 1 + G[0] x^2 + G[1] x^4 + ..., where G_n = G[n-1]...
    We will sometimes call g with a whole array of x-values.
    """
    # enumerate(G) = [[0,G[0]], [1,G[1]], ...], conveniently giving n-1...
    # enumerate(G,1) starts the numbering at one
    # sum(M) adds up all the entries of a matrix. This is OK if x is a 
    # array [x1,x2,...] we want an array of values [g(x1),g(x2),...]. s... ...
    return 1.+np.sum([...... for n,Gn in enumerate(G,1)],axis=0)
    
def T(g,G,x,alpha=None):
    """
    Returns renormalization-group transform T[g](x).
    If alpha is not known, calculate it from g using your result from (
    """
    if alpha is None:
        alpha = ......
    return ......
 
def Dg(G,x):
    """
    Returns g'(x)
    """
    return np.sum(......,axis=0)
 
# Test your functions by plotting them. G = [-1.5, 0, 0, ...] should gi...
x = np.arange(0,2,0.01)
plt.plot(x,g([-1.5,0.],x))
plt.plot(x,T(g,[-1.5,0],x))
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(c) Use a root-finding routine to calculate  for . Start the search at ,
 ( ) to avoid landing at the wrong fixed point. (If it is convenient for you to use

high-precision arithmetic, continue to higher .) To how many decimal places can you
reproduce the correct value for  at the beginning of this exercise?

𝛼 𝑁 = 1,… , 9 = −1.5𝐺∗1
= 0𝐺∗𝑛 𝑛 > 1
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Now we need to solve for the renormalization group flows , linearized about the fixed
point . Feigenbaum tells us that ,
where  is the linear operator taking  to

(d) Derive the equation above.

𝑇 [𝑔]

𝑔(𝑥) = (𝑥) + 𝜖𝜓(𝑥)𝑔∗ 𝑇 [ + 𝜖𝜓] = 𝑇 [ ] + 𝜖[𝜓]𝑔∗ 𝑔∗
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′

[Answer here]

We want to find eigenfunctions that satisfy . Again, we can expand  in a
polynomial

[𝜓] = 𝜆𝜓 𝜓(𝑥)

def toZero(G):
    """Returns T[g](x) - g(x) for N points [1/N,2/N,...,1], given N ter...
    N = len(G)
    x = np.linspace(......)
    return ......
 
# Check that your return gives a sensible value for the difference of T
print(toZero([-1.5]))
 
# Use root to find the best solution for N=1. The values giving zero is
G1 = root(......,[-1.5]).x
 
# What do we get for alpha[1]?
1/......

# Fill dictionary with your values of alpha[N] for N = 1...9...
# Also keep your values for the fixed point function Gstar[N] 
# for use in calculating delta
alpha = {}
Gstar = ......
Nmax = 15
for N in range(1,Nmax):
    G0 = np.zeros(N)
    G0[0]=-1.5
    Gstar[N] = root(......).x
    alpha[N] = ......
 
# Print out your alphas
print(np.array([(N,......) for N in range(1,Nmax)]))
 
# Calculate how far they deviate from alphaFeigenbaum
[(N,alphaFeigenbaum-......) for ......]
 



We then approximate the action of  on  by its action at  points , that need not be the
same as the  points  we used to find . We shall use ,

. (For , we use .) This leads us to a linear system of  equations
for the coefficients , using the previous two equations.

These equations for the coefficients  of the eigenfunctions of  is in the form of a
generalized eigenvalue problem

The solution to the generalized eigenvalue problem can be found from the eigenvalues of
, but most eigenvalue routines provide a more efficient and accurate option for directly

solving the generalized equation given  and .

(e) Write a routine that calculates the matrices  and  implicitly defined by the previous two
equations. For  you should generate  matrices. For , what is your
prediction for ? (These should reproduce the values from the companion Exercise 12.29 part
(d) )
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(f) Solve the generalized eigenvalue problem for  and  for . To how many
decimal places can you reproduce the correct value for  at the beginning of this exercise?

𝐿 𝑋 𝑁 = 1,… , 9

𝛿

def X(N):
    """Returns X_{in} = xtilde_i**(2n)"""
    # Make sure your matrix hasn't transposed rows (i) and columns (n).
    xtildes = np.linspace(0.,1.,N)
    return np.array([[...... for n in range(N)] for xtilde in xtildes])
 
print(X(1))
print(X(3))
 
def Ln(xtildes,n,alpha,G):
    """Returns one column of L, given the array of xtilde values"""
    return alpha*g(......)**(......) + alpha*Dg(......)*(......)**(......)
 
# Test Ln on the one-element column for N=1: does it give a reasonable 
print('delta[1] should be the entry in ', Ln(np.array([0.]),0,alpha[1],
 
def L(N):
    """Builds an array Lin from the columns Ln"""
    # Again, make sure your matrix has rows (i) and columns (n). You ma
    xtildes = ......
    return np.array([Ln(......) for n in range(N)]).transpose()
 
print(L(1))
 
print(L(3))
 
eig(L(3),X(3))



In [ ]: # Fill dictionary with your values of alpha[N] for N = 1...9...
delta = {}
Nmax = 15
for N in range(1,Nmax):
    eigvals, eigvecs = ......
    delta[N] = np.real(eigvals[0])
 
# Print out your deltas
print(np.array([(......) for N in ......]))
 
# Calculate how far they deviate from deltaFeigenbaum
[(N,......) for N in range(1,Nmax)]


