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Polyacetylene and solitons: weird quasiparticles

(Sethna, “Entropy, Order Parameters,  and Complexity”,  2nd edition, ex. XXX.)
© 2024, James P.  Sethna, all rights reserved.

This exercise is primarily analytical: only those parts with computational components are included in 

this file. The exercise will be available at https://sethna.lassp.cornell.edu/StatMech/SethnaExercis-
es.pdf.

... See exercise for long introduction to polyacetylene and the SSH model

(a) Solve for the eigenstates  of the  𝑁×𝑁 SSH Hamiltonian, with  𝑁 even (say, 200) and starting with a 

double-bond connecting the first two carbon atoms for  𝛿>0. (Note that hopping with strength  𝑡 is 

represented by Hamiltonian matrix elements  −𝑡 connecting the two sites, so that hopping prefers 

neighboring sites to have the same sign.) So, for even  𝑁, the matrix should begin and end like this:
0 -t - δ 0 0 ...

-t - δ 0 -t + δ 0 ...
0 -t + δ 0 -t - δ ...
0 0 -t - δ 0 ...

... ... ... ... ...
Use  𝑡=2.5 eV and  𝛿=0.35 eV.  Plot the eigenstate  energies in order from smallest to largest. Which states  

will be full at zero temperature?  An insulator fills an energy band, and has an energy gap. A metal fills 

only a portion of the band, and has no gap between eigenenergies at the last filled state.  Do you find an 

energy gap between the highest filled state  energy and the lowest empty state?  Compare it to the 

predicted gap  4𝛿 for the infinite system. Finally, notice that for every eigenenergy  𝐸, there is a partner 
eigenenergy  −𝐸.

Ham[t_, δ_, N_] :=
{H[i_, j_] := -(t + δ) /; OddQ[i] && j  i + 1;
H[j_, i_] := -(t + δ) /; OddQ[i] && j  i + 1;
H[i_, j_] := ... /; EvenQ[i] && j  i + 1;
H[j_, i_] := ... /; EvenQ[i] && ...;
H[i_, j_] := 0; Table[H[i, j], {i, 1, N}, {j, 1, N}]}〚1〛

t = 2.5;
δ = 0.35;



numSites = 200;
EigSys = Eigensystem[Ham[t, ...]];
(* Need to sort eigenvectors and eigenvalues *)

{vals, vecs} = Transpose[Sort[Transpose[EigSys]]];
ListPlot[vals]
Print[ ..., " =? ", 4 δ]

Your answer here (or in a separate  writeup).

... Discussion of gaps, particle hole symmetry, and edge states  ...

(b) Now take  𝑁 odd (say 201), again starting with a double bond connecting the first two atoms. Again 

plot the eigenstate  energies. Do you see a state  now in the gap? Can you argue from particle-hole 

symmetry that it must exist?

numSites = 201;
EigSys = Eigensystem[Ham[t, δ, numSites]];
{vals, vecs} = ...
ListPlot[vals]

Your answer here (or in a separate  writeup).

(c) Plot the midgap eigenstate   𝜓_midgap(𝑛) vs.  𝑛. Is it extended or localized? Is it in the center,  or on 

one edge? Which edge? Can you guess why we wanted to start and end with a double bond in part (a)?

midgap = ...;
Print["Eigenvalue near zero is number ",
midgap, " with eigenvalue ", vals〚midgap〛]

ListPlot[vecs〚 ...〛, PlotRange  All, Joined  True]

Your answer here (or in a separate  writeup).

... Discussion of edge states,  the quantum Hall effect, domain walls, the spreading of the soliton 

domain wall to a width of seven atoms, ... and the resulting electronic hopping, which replaces a 

uniform  𝛿 with 𝛿sol(𝑛) = −(0.35eV) tanh((𝑛−𝑛0)/𝜉), where  𝑛0 is the location of the center of the soliton, 
and the minus sign is chosen so that the chain starts with a double bond.

(d) Modify your Hamiltonian to allow variations in  𝛿(𝑛), and place the soliton at the center of the chain, 
using the equation above, and with  𝑁=201. (With  𝑁 odd, you should now have double bonds at both 

ends of the chain, to avoid midgap states  at the edges.) Solve for the eigenstates,  and if necessary sort 
them in order of their eigenvalues. Is there one near zero energy? Plot the wavefunction for the midgap 

state.   Does the midgap electron wavefunction move with the soliton? Does it stay fairly near to the 

center of the soliton? Should we view it as part of the soliton?
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ξ = 7.;
δSol[n_, n0_] := -δ Tanh[ ...]
HamSoliton[t_, δSol_, N_, ξ_] :=
{n0 = (N) / 2;

H[i_, j_] := -(t + δSol[i, n0]) /; OddQ[i] && j  i + 1;
...

...
... ×

H[i_, j_] := 0;
Table[H[ ...], { ...}, { ...}]}〚1〛

numSites = 201;
EigSys = ...;
{vals, vecs} = ...;
vals〚midgap〛

ListPlot[vecs〚 ...〛, Joined  True, PlotRange  All]

Your answer here (or in a separate  writeup).

... Discussion of solitons, weird quantum numbers, and different charge states  due to different fillings 

of the mid-gap state...

When our odd-length chain is neutral, the  𝑁=201 carbon atoms each contribute an electron, so there 

are  𝑁=201 electrons to fit into the eigenstates  for the system with a soliton. At zero temperature,  200 of 
these electrons will fill the 100 eigenstates  with negative energy. Each of the filled states  will have 

electrons in an antisymmetric singlet state   (1/sqrt(2))(↑↓−↓↑) with net spin zero.

(e) At zero temperature,  into which eigenstate  will the last electron go? Plot the square of the probabil-
ity density in the midgap state  you found. Where along the chain does the last electron mostly reside? If 
the last electron is spin  +1/2 , what is the spin of the system as a whole? Should we attribute that spin 

to the soliton?

ListPlot[ ..., PlotRange  All]

Your answer here (or in a separate  writeup).

... Discussion of spin quantum numbers of the different charge states  of the soliton. Turn to charge 

quantum numbers...

Let us now carefully consider what the charge of the soliton is in the possible ways to fill this midgap 

state.  We saw in part (e) that the probability density of an electron in the midgap state   

|𝜓_midgap(𝑛)|^2 is localized near the soliton. But all the other eigenstates  also change when the 

Hamiltonian changes due to the soliton. At low temperatures,  the negative energy eigenstates  will each 

have two electrons, and the positive energy eigenstates  will be empty. Let us label our sorted eigen-

PolyacetyleneSolitonHintsMathematica.nb     3



states  with  

0≤𝑚<𝑁, so  𝜓_101(𝑛) is the mid-gap state  amplitude on carbon  𝑛, and the negative energy eigenstates  

are  𝜓_𝑚(𝑛) with  𝑚<101.

(f) Numerically calculate the net electron probability density due to the doubly occupied negative 

energy eigenstates,   𝜌 (𝑛) = 2∑occupied |𝜓_𝑚(𝑛)|^2, and plot it. (This, times the charge  −𝑒 on the electron 

and plus the charge  +𝑒 on the carbon ions, is the net charge distribution for a soliton with an empty 

mid-gap state.)  Is the soliton with an empty midgap state,  together with the associated dip in the 

electron density nearby, neutral? Now plot  𝜌(𝑛) plus the probability  |𝜓_midgap(𝑛)|^2  you calculated 

in part (e), to find the charge density with one electron in the midgap state.  Is the soliton with spin  ±1/2 

positively charged, negatively charged, or neutral? Finally, plot the net charge density when the 

midgap state  is doubly occupied.  To  summarize, what is the net charge for our soliton quasiparticle in
these three cases?

(* Two electrons in each valence eigenstate*)
valenceFill = Sum[2 ..., {i, 1, ...}];
ListPlot[valenceFull, PlotRange  All]
midgapProb = ...;
ListPlot[ ... + ..., PlotRange  All]
ListPlot[ ... + ..., PlotRange  All]

Your answer here (or in a separate  writeup).

Discussion of spin-charge separation, fractional charge, whether the soliton is the lowest energy charge 

or spin excitation. Parts (g), (h), and (i) to be answered.
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