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Import packages

"RB dynamics I" studied the dynamic fluctuations of an entropic model for a rubber band: 

segments of length , fluctuating between pointing forward and backward at random. It

studied the random walk of lengths  as the segments hopped, both without and with an

external parabolic potential stretching the band. Here we shall derive a spatially dependent

diffusion equation describing the evolution of the probability distribution of lengths with

time, in the limit of large .

Current is flow forward minus flow backward. The current past the midpoint 

between two possible lengths  and  is given by the probabilities  and 

times the probabilities  of flipping forward and backward. (For this exercise, we shall

assume  is even.)

Since the sum of the probabilities of being at length , , is constant, and

our dynamics only shifts  locally (by , we are advised to write our dynamics in

terms of the probability current. Note that  for odd integers . Let , for odd 

(midway between possible lengths of the chain) be the net current from  to  per

segment flip. In "RB dynamics I", we gave the probability  per flip that a chain of

length  will grow to  (contributing to  at ), and  that a chain of

length  will shrink to . (contributing to  at ).

In [ ]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
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(a) Our rubber band ensemble at time  has probability  of having length . Argue that

the probability current  of our rubber band ensemble growing past the (odd) length

 is

where  is the time for one segment flip.

Here by convention we set , so a sweep that flips every segment on average

once takes one unit of time.

Your answer here (or in a separate writeup). Double click to edit. Latex works too (

).

In taking the continuum limit as  (figure below), let us keep the total unfolded

length fixed. To do so, we use . Also, the harmonic stretching force

, so we change variables to . Finally, the probability 

represents the probability density  between  and  (i.e.,  and

), so we substitute  for .

Changing to contiuum variables. In going from the microscopic description to the continuum

limit, we change all lengths by a factor of , we change the negative ``spring'' constant 

to , and we change from probabilities  to probability densities

.

(b) Substituting , , and , show that

Your answer here. Double click to edit.

(c) What is the net current  in the limit  (holding  and  constant)? Use the fact

that  to remove the exponentials from your answer,

and show your work. Argue that the end of the rubber band as  has a position-
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dependent velocity

In 'RB Dynamics I'(e), you found that for a large  the length quickly moved to a final off-

center position. Find a numerical solution for this final length at  and  for

. Derive from  the critical value  when the rubber band equilibrium length

splits away from the origin.

Your answer here. Double click to edit.

(d) Using your random-walk simulation from "RB Dynamics I", make a histogram of lengths

for  at  and  at , adding points until you get good

histograms. When necessary, drop the transient first part of the trajectory, while the rubber

band moves from zero to the new minimum. Are your histograms concentrated near the

predicted value you found in part (c)?

We supply the complete code here. You may wish to substitute your answer from RB

Dynamics I, or use this to help solve the previous problem.

v(x) = tanh(ax) − x. (3)

a

a = 0.75 a = 1.5

N → ∞ v(x) ac

N = 100 a = 0.75 N = 1000 a = 1.5

In [ ]: def E(L,alpha):
    return -(1/2)*alpha*L**2

def Pplus(L,N,alpha):
    return ((N-L)/(2*N)) * (1/(1+np.exp(E(L+2,alpha)-E(L,alpha))))

def Pminus(L,N,alpha):
    return ((N+L)/(2*N)) * (1/(1+np.exp(E(L-2,alpha)-E(L,alpha))))

def HeatBathFlip(L, N, alpha):
    """
    """
    r = np.random.random()
    if r < Pplus(L,N,alpha):
        return L+2
    elif r < Pplus(L,N,alpha)+Pminus(L,N,alpha):
        return L-2
    else:
        return L
        
def IterateHBFlips(N, alpha, nSteps, L0=0):
    L = L0
    traj = [L]
    for n in range(nSteps):
        L = HeatBathFlip(L, N, alpha)
        traj.append(L)
    Delta_t = 1./N;
    ts = Delta_t * np.arange(nSteps+1)
    return ts, traj

In [ ]: N = 100;
alpha = 0....;
ts, trajectory = IterateHBFlips(...);



Your answer here. Double click to edit.

(e) Starting at , launch a trajectory for  and , and examine how it

flows to its final value once it deviates from the local fixed point at zero (say, in the first

20000 segment flips). Compare the flow to that predicted by your equation for the velocity

as a function of length in part (c). (That is, numerically solve  from part (c),

starting from a small positive or negative value of , and rescale it from from  and , to 

and .) The time spent in the vicinity of  in the random walk will depend on the

fluctuations. Adjust the theory curve right and left to make a good comparison.

The current in the limit  is the answer that the continuum limit supplies.

Thermodynamics and other continuum theories often ignore the fluctuations in the system.

We can study the statistical mechanics of the fluctuations by studying the leading

corrections in .

(f) Now find the first correction in  to the net current. Write the current to this order in

the form

Calculate . Show that

plt.plot(...)
plt.figure()
plt.hist(..., density=True, bins=[n for n in range(-100,100,2)]);

In [ ]: N = 1000;
...
plt.hist(trajectory[15000:], density=True, bins=[n for n in range(-N,N,2)]);

x = 0 N = 1000 a = 1.5

dx/dt = v(x)

x x a L

α L = 0

In [ ]: # This will re-use the last 'trajectory' you ran.

def v(x,t,a):
    return np.tanh(...)-...

a = N*alpha

tsTheory = np.arange(0,40,0.1)

# odeint(v,v0,ts,args) solves dx/dt = v(x,args) 
# starting at v0, returning v(ts)
sol = odeint(v,0.001,tsTheory,args=(a,))

# Subtract time shift from tsTheory to align with trajectory
plt.plot(tsTheory-..., N * sol);

# Now plot the trajectory saved from a different window
plt.plot(ts,trajectory)
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Your answer here. Double click to edit.

The corrections  make tiny corrections to the fixed point of part (d) and the velocity

curve of part (e) above -- unimportant for large . But the term proportional to , the

typical domain of statistical mechanics, dominates many of the properties.)

(g) Write the emergent forced diffusion equation governing our entropic rubber band. (To

simplify things, leave it in terms of , , , and their derivatives. Ignore the terms involving

.)

Your answer here. Double click to edit.

(h) Approximate your differential equation to linear order in  about zero (again ignoring ),

and solve your diffusion equation for the stationary distribution at . (Hint: Solving

for the distribution that makes the current equal to zero is easier. Try a Gaussian.) Compare

to a histogram of equilibrated values of your random walk simulation.

Your answer here. Double click to edit.
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In [ ]: N = 100;
alpha = 0.0075;
... = IterateHBFlips(...,100000);
plt.plot(...)
plt.figure()
plt.hist(..., ...);
a = N*alpha
sigma2x = ...
sigma2L = ...**2 * ...
Ls = np.arange(-100,100,2)
prediction = (1/np.sqrt(...))*np.exp(-.../(2*...))
plt.plot(Ls, prediction)


