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This exercise is based on Alemi and Bierbaum’s class project, published in “You Can Run, You Can 

Hide: The Epidemiology and Statistical Mechanics of Zombies”, Alexander A. Alemi, Matthew Bierbaum, 
Christopher R. Myers, and James P. Sethna, Phys. Rev. E 92, 022146 (2015). See also the Zombi-
etown site http://hey.runat.me/pages/programming/zombietown_usa.html and simulator http://mattbier-
baum.github.io/zombies-usa. The computational aspects of the exercise start in part (e).

Epidemics are studied by disease control specialists using statistical methods, modeling the propaga-
tion of the disease as susceptible people are infected, infect others, and recover. The SIR model is the 

simplest commonly studied model, with three coupled differential equations: dS/dt=-βSI reflects the rate 

β at which each infected person I infects each susceptible person S, and dR/dt=κI reflects the rate κ 

that each infected person joins the recovered population R.

(a) What is the equation for dI/dt implied by these first two equations, assuming no infected people die 

or shift groups other than by new infections or recoveries?

We shall use a less common, but even simpler SZR model, designed to predict the evolution of a 

zombie outbreak.
   dS/dt = -β S Z
   dZ/dt = (β-κ) S Z
   dR/dt = κ S Z.
Here the zombie population Z never recovers, but if it is destroyed by a member of the surviving popula-
tion S, it joins the removed population R. The bite parameter β describes the rate at which a zombie 

bites a human it encounters, and the kill parameter κ gives the rate that a human may destroy a zombie 

it finds.

The SZR model is even simpler than the SIR model, in that one can write an explicit solution for the 

evolution as a function of time. We do so in two steps.

(b) Argue that the only stationary states have all zombies or all humans. Both dS/dt and dZ/dt are linear 
in SZ, so there must be a linear combination of the two that has no time dependence. Show that 
P=Z+(1-κ/β)S satisfies P˙=0. Argue from these two facts that for P<0 the zombies must lose.

(c) Show that χ=S/Z satisfies dχ/dt=γχ, and so χ(t)=χ 0exp(γt). Show that γ = -β P. Check that this 
answer concurs with your criterion for human survival in part (b).

So the fraction of the doomed species exponentially decays, and the population of the surviving species 
is determined by P. If desired, one could use the added equation S(t)+Z(t)+R(t)=N with your answers to 

parts (b) and (c) to solve analytically for the explicit time evolution of S, Z, and R. We shall solve these 



equations numerically instead (below).

Suppose now that we start with a single zombie Z0=1, and the number of humans S0 is large. It would 

seem from our equation for our invariant P from part (b) that if the bite parameter β is greater than the 

kill parameter κ that the humans are doomed. But surely there is some chance that we will be lucky, 
and kill the zombie before it bites any of us? This will happen with probability κ/(β+κ). If we fail the first 
time, we can hope to destroy two zombies before either bites again\dots

Here is where the statistical fluctuations become important. The SZR differential equations above are a 

continuum approximation to the discrete transitions between integer numbers of the three species. 
These three equations are similar to reaction rate equations in chemistry (as in eqn 6.50) with 

molecules replaced by people:
    S + Z → 2 Z       (rate β S Z)
    S + Z → S + R   (rate κ S Z).
Just as for disease outbreaks, if the number of molecules is small then chemical reactions exhibit 
important statistical fluctuations. These fluctuations are important, for example, for the biology inside 

cells, where the numbers of a given species of RNA or protein can be small, and the number of DNA
sites engaging in creating RNA is usually either zero or one (see Exercises 8.10 and 8.11).

We can simulate each individual bite and kill event for a population of S humans and Z zombies. 
(Indeed, this can be done rather efficiently for the entire population of the USA; see the simulator 
above.) The time to the next event is an exponential random variable given by the total event rate. 
Which event happens next is then weighted by the individual rates for the different events.

It is well known that decay rates add. Let us nonetheless derive this. Let the probability density of event 

type #n be ρn(t), with survival probability Sn(t) = 1 - ∫0
t
ρn(τ)dτ. Let there be two types of events.

(d) Write the probability density of the first event, ρtot(t), in terms of ρ1, ρ2, S1, and S2. (The final answer 
should involve no integrals or derivatives.) Specialize to systems with constant rates, which have an 

exponentially decaying survival time, Subscript[S, n] (t) = exp(-γnt). Show that the total event rate γ tot 

is the sum γ1 + γ2. Show that the probability of the next event being γ1 is γ1 /γtot.

To simulate one step of our discrete SZR model, we
   (i) find the total rate of events γtot,
   (ii) increment t by Δt, a random number pulled from an exponential distribution with decay rate γtot,
   (iii) choose to bite or to kill by choosing a random number uniform in (0,γtot), and checking if it is less 
than γ1,
   (iv) change S, Z, and R appropriately for the event, and
   (v) perform any observations needed.

This is a simple example of the Gillespie algorithm, discussed in more detail in Exercises 8.10 and 8.11.

(e) Write a routine to use the Gillespie algorithm to solve the discrete SZR model for the two reaction-
rate equations above, keeping track of t, S, Z, and R for each event, ending when S=0 or Z=0, and 

adding an extra point at tmax if the system terminates early. Write a routine numerically solve the three 

continuum equations above. Use β=0.001, κ=0.0008, and tmax=5. (Should the zombies win?) Compare 

the two for initial conditions Z0=100, S0=9900, and R0=0 (a simultaneous outbreak of a hundred zom-
bies). Is the continuum limit faithfully describing the behavior for large numbers of zombies and humans?
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β = 0.001; κ = 0.0008;
tMax = 5; S0 = ...; Z0 = ...; R0 = 0;
SZReqns = {S'[t] ⩵ ..., ..., ...}
{Ssol, Zsol, Rsol} =

NDSolveValue[{SZReqns, S[0] ⩵ S0, ...}, {S, Z, R}, {t, 0, tMax}];

gContinuous = Plot[{Ssol[t], ..., ...}, {t, 0, tMax},
PlotLegends → {"Survivors", "Zombies", "Removed"}, AxesLabel → {"Time t",}]

Gillespie[S0_, Z0_, R0_, tMax_] :=
Module[{t = 0., S = S0, Z = Z0, R = R0, biteRate, killRate,

totalRate, whichEvent, Soft, Zoft, Roft, St, Zt, Rt},
(* Reap and Sow are much faster than appending to a list. Sow the points S(t),
Z(t), and R(t) during the simulation, and reap them at the end. *)

{{Soft}, {Zoft}, {Roft}} =

Reap[While[t < ... && ...,
biteRate = ...;
...;

totalRate = ...; t += RandomVariate[ExponentialDistribution[ ...]];
whichEvent = ...;
If[whichEvent < ...,
(* Zombie bites human *)

S = ...; ...,
(* Human kills zombie *)

...];
Sow[{t, S}, St];
Sow[{t, Z}, Zt];
Sow[{t, R}, Rt]];

If[t < tMax,
Sow[{tMax, S}, St];
...];

, {St, Zt, Rt}][[2]]; {Soft, Zoft, Roft}]

tMax = 5; S0 = ...; Z0 = ...; R0 = 0;
{Soft, Zoft, Roft} = Gillespie[ ...];
gGillespie = ListPlot[{Soft, Zoft, Roft}, Joined → True]
Show[gContinuous, gGillespie]

Now let us examine the likelihood of zombies being stamped out despite their advantage in biting, if we 

start with only one zombie.

(f) Compare the continuum solution with the zombie simulation for twenty initial conditions using Z0=1, 
S0=9999, and R0=0. Are the simulations suffering from more fluctuations than they did for larger number 
of zombies? Do you see evidence for zombie extinction early in the outbreak? What fraction of the initial 
outbreaks appear to have killed off all the humans? Zoom in to early times (Z≤5, t<0.5) and note a few 

SIRSZRHintsMathematica.nb  ���3



trajectories where the first zombie is killed before biting, and trajectories where the zombie population 

goes extinct after reaching a peak population of two or three.

tMax = 5.; S0 = ...; Z0 = ...; R0 = 0;
{Ssol, Zsol, Rsol} = NDSolveValue[ ..., ..., ...];
gContinuousExtinct = Plot[ ...];
nRuns = 20;
For[n = 1, n ≤ nRuns, n = n + 1,

{{SG[n], ZG[n], RG[n]} = Gillespie[ ...];
gG[n] = ListPlot[ ..., Joined → True];}];

Show[gContinuousExtinct, Table[gG[n], {n, 1, nRuns}]]

Show[Table[gG[n], {n, 1, nRuns}], PlotRange → {{0, 0.5}, {0, 5}}]

We can estimate the probability P∞
ext that a single zombie with bite rate larger than kill rate will go 

extinct before taking over a large initial human population S0→∞. As described in Alemi and Bierbaum’s 
zombie paper in PRE, the probability Pext that the zombies go extinct, in the limit of many humans, is 
equal to the probability that the first one is destroyed, plus the probability that it bites first times the 

probability that both zombie lines go extinct:
       P∞

ext=κ/(β+κ)+β/(β+κ) (P∞
ext)

2.
This can be solved to show P∞

ext=κ/β.

Exactly this same argument holds for regular disease outbreaks. Similar arguments can be used to 

determine the likelihood that an advantageous gene mutation will take over a large population.

(g) Was the fraction of extinctions you observed in part (f) roughly given by the calculation above? Write 

a simpler routine that simulates the Gillespie algorithm over n epidemics, reporting the fraction in which 

zombies go extinct (observing only whether Z=0 happens before S=0, ignoring the time and the trajec-
tory). For S0=9999 and 1000 epidemics, how good is the prediction? Draw a plot of P∞

ext versus log S0, 
for S0=1, 2, 4, ..., 512, using 1000 epidemics each. How large must the human population be before our 
estimate P∞

ext is within about 10% of the correct answer?

Extinction[S0_, Z0_, R0_, nEpidemics_] :=

Module{S, Z, R, biteRate, killRate, totalRate, whichEvent},

nExtinct = ...;
For[epidemic = 1, ..., ...,
S = S0; Z = Z0; R = R0;
While[S Z > 0,
{biteRate = ...;

...;
If[whichEvent < ...,
(* Zombie bites human *)

...,
(* Human kills zombie *)

...]}];
If[S > 0, ...]];

NnExtinct  nEpidemics
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Extinction[ ..., ..., 0, ...]

extinctionVsPop = Table[{2^n, Extinction[2^n, ...]}, {n, 0, 10}]

ListLogLinearPlot[extinctionVsPop, Joined → True,
AxesLabel → {"Initial Population", "Zombie Extinction Probability Pext"}]
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