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The problem of extracting  the decay rates from a sum of exponential decays is a famously difficult 
inverse problem, from the early days of radioactivity to modern simulations of lattice quantum chromo-
dynamics. In a series of exercises, we shall use our information geometry ideas to study the simplest 
version of this problem: the sum of  𝑁
  exponential decays:
𝑦𝚯(𝑡)=(1/𝑁) ∑ ^𝑁 exp(−𝜃𝛼𝑡).
 

We anticipate that it will be challenging to disentangle decay rates  𝜃 which are close to one another,  
unless one has high-precision data over large ranges of time. All the decay curves are smoothly mono-
tonically decreasing, and one could imagine modeling a sum of two decays with a single intermediate 

decay rate. You shall find in these exercises that this simple model illustrates  the behavior we have 

found widespread in multiparameter models in physics, engineering, biology, and other fields.

In this first exercise, we presume we have perfect experimental data for the decay 𝑑(𝑡)  at  𝑀  points  𝑡_𝑖  
equally spread for  𝑡  between 0 and 10, with separation  Δ𝑡=10/𝑀. We shall be considering how well 
this data can be represented by other values of the parameters   𝚯, so our cost is:

𝐶(𝚯,𝚯[0])=∑^𝑀 (𝑦𝚯(𝑡_𝑖)−𝑦𝚯[0](𝑡_𝑖))^2/2𝜎2 ≈ ∫(1/2)(𝑦𝚯(𝑡)−𝑦𝚯[0](𝑡))^2 𝑑𝑡.
 where for convenience (since our data is perfect) we set  𝜎2=1/Δ𝑡. We shall use the continuum approxi-
mation to evaluate the Hessian at the best fit.

To  start, suppose  𝑑(𝑡) has two decay rates  𝚯[0]=[1,2], so the data  𝑑(𝑡)=(1/2)(exp(−𝑡)+exp(−2𝑡)).

(a) Write a function that returns  𝑦𝚯(𝑡), and a function that computes the cost for  Δ𝑡=0.01. Draw a 

contour plot of  𝐶 in the square  0.5<𝜃𝛼<2.5, with contours at  𝐶={2−12,2−11,…,20}. Set the number of 
grid points per side to 40 (so  Δ𝜃=0.02) to see the two minima.

Remember to not loop over the times: exp({1,2,3}) = [e^1,e^2,e^3]



y[θ_][t_] := 1 / Length[θ] Sum[Exp[-θ〚n〛 t], {n, 1, Length[θ]}]
θ0 = ...;
dt = ...;
ts = Table[t, { ...}];
Cost[θ_, θ0_, ts_] := dt Sum[(y[θ][ts〚i〛] - y[θ0][ts〚i〛])^2, {i, 1, Length[ts]}]
(* Too slow! Do it with vector operations. y[θ][ts]
generates entire vector of predictions *)

Cost[θ_, θ0_, ts_] := dt Norm[y[θ][ts] - ...]^2 / 2
CostContinuum[θ_, θ0_] := Integrate[( ...)^2 / 2, {t, 0, ∞}]

In[ ]:= Cost[{2, 3}, θ0, ts]
CostContinuum[{2, 3}, θ0] // N

levels = Table[2^n, {n, -14, -4}];
ContourPlot[Cost[{θx, θy}, θ0, ts], {θx, 0.5, 2.5}, {θy, 0.5, 2.5},
Contours  levels, ContourShading  None, MaxRecursion  3]

The diagonal in this plot gives single exponential decays. How well does a single exponential capture 

the behavior at  𝚯[0]?

(b) Constraining  𝜃1=𝜃2, find the point of minimum cost  𝜃min. Where is the point on the contour plot? 

Compare the two curves  𝑦𝜃[0](𝑡) and  𝑦𝜃min(𝑡), and also plot their difference.

toMinimize1exponent[θ_] := Cost[{ ...}, θ0, ts]
minθ = θ /. FindMinimum[ ..., {θ, 1.5}]〚2〛
Plot[{y[ ...][t], y[θ0][t]}, {t, 0, 10}, PlotRange  All]
Plot[y[θ0][t] - y[ ...][t], {t, 0, 10}, PlotRange  All]

One can see from the contour plot that measuring the two rate constants  separately  would be a chal-
lenge. This is because the two exponentials have similar shapes, so increasing one decay rate and 

decreasing the other can almost perfectly compensate for one another.

This clearly is not a deep truth for two exponentials. But the effect is hugely magnified when we have 

many parameters.  We can see this by computing the eigenvalues of the cost Hessian.

(c) Analytically calculate the Jacobian 𝐽_𝑡𝛼=∂𝑦_𝚯(𝑡)/∂𝜃𝛼 in the continuum approximation. Using the 

Jacobian, show that the Hessian for the cost evaluated at the best fit is
H_𝛼𝛽=(2/𝑁^2) (1/(𝜃𝛼+𝜃𝛽)^3).

J[t_, θα_] = D[ ... [t], θα]

H[θα_, θβ_, 2] = Integrate[ ..., {t, 0, ∞}, Assumptions  {θα > 0, θβ > 0}]

(d) Using your answer from part (c), write a routine to calculate the entire array  𝐻(𝚯). Check it by 

examining the eigenvectors and eigenvalues for the  𝑁=2  case of part (b). What do you predict the ratio  

𝑅 = (long axis/short axis) to be, in terms of the two eigenvalues  𝜆stiffer and  𝜆sloppier? Are the direc-
tions roughly in line with the eigenvectors?
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Hess = Table[H[θα, θβ, 2], {θα, θ0}, {θβ, θ0}]
Hess // N
Eigensystem[Hess] // N
...

H[θα_, θβ_, n_] = 2 / (n^2 ...)

(e) For a sum of seven exponentials, with  𝚯[0]=[1,2,3,…,7], construct the Hessian, and find its eigenval-
ues. Are they sloppy (roughly equally spaced in log)? By roughly what factor does each successive 

eigenvalue shrink?

θ7 = 1.0 Table[n, {n, 1, 7}];
Hess7 = Table[ ..., {θα, θ7}, {θβ, θ7}];
vals = Eigenvalues[Hess];
vals
...

This sloppiness makes it strikingly difficult to extract  the parameter  values from the data.

(f) Argue that the number of measurements  𝑛_measure needed to estimate a parameter  scales 

inversely with its variance ( 𝑛_measure ∼ 1/𝜎^2). Given that the eigenvalues of the Hessian give the 

variance along the various eigendirections, by what factor  𝑛sloppy/𝑛stiff is it harder to measure the 

parameters  along the sloppy directions, for your sum of seven exponentials?

In[ ]:= SloppyStiffRatio = (1 / vals〚7〛) / (1 / vals〚1〛)

(g) Given that the diagonal elements of the inverse cost Hessian are proportional to the variance in the 

corresponding parameter  for one sampling of the Gaussian given by the cost, what are the variances in 

the seven parameters   𝜃0_𝛼?

σVary7 = Table[Sqrt[Inverse[ ...]〚 ...〛], {n, 1, 7}]
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