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The problem of extracting the decay rates from a sum of exponential decays is a famously difficult
inverse problem, from the early days of radioactivity to modern simulations of lattice quantum
chromodynamics. In a series of exercises, we shall use our information geometry ideas to study the
simplest version of this problem: the sum of 𝑁 exponential decays:

𝑦�(𝑡) = (1/𝑁)
𝑁

∑
𝛼=1

exp(−𝜃𝛼𝑡). (1)

We anticipate that it will be challenging to disentangle decay rates 𝜃 which are close to one another,
unless one has high-precision data over large ranges of time. All the decay curves are smoothly
monotonically decreasing, and one could imagine modeling a sum of two decays with a single
intermediate decay rate. You shall find in these exercises that this simple model illustrates the
behavior we have found widespread in multiparameter models in physics, engineering, biology, and
other fields.

In this first exercise, we presume we have perfect experimental data for the decay 𝑑(𝑡) at 𝑀 points
𝑡𝑖 equally spread for 𝑡 between 0 and 10, with separation Δ𝑡 = 10/𝑀 . We shall be considering how
well this data can be represented by other values of the parameters �, so our cost is:

𝐶(�, �[0]) =
𝑀

∑
𝑖=1

(𝑦�(𝑡𝑖) − 𝑦�[0](𝑡𝑖))
2 /2𝜎2 ≈ ∫

∞

0
(1/2) (𝑦�(𝑡) − 𝑦�[0](𝑡))2 𝑑𝑡.

where for convenience (since our data is perfect) we set 𝜎2 = 1/Δ𝑡. We shall use the continuum
approximation to evaluate the Hessian at the best fit.

To start, suppose 𝑑(𝑡) has two decay rates �[0] = [1, 2], so the data 𝑑(𝑡) = (1/2)(exp(−𝑡)+exp(−2𝑡)).
(a) Write a function that returns 𝑦�(𝑡), and a function that computes the cost for Δ𝑡 = 0.01. Draw

a contour plot of 𝐶 in the square 0.5 < 𝜃𝛼 < 2.5, with contours at 𝐶 = {2−12, 2−11, … , 20}.
Set the number of grid points per side to 40 (so Δ𝜃 = 0.02) to see the two minima.

[ ]: %matplotlib inline
from numpy import *
from matplotlib.pyplot import plot, scatter, subplots, axes, contour, show
from scipy.optimize import minimize, least_squares
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from mpl_toolkits import mplot3d

[ ]: def y(thetas,t):
"""It will run faster if you note that exp(-theta*t) with (t=array([t1,t2,..

↪.])
will give the array of exponents """

return (...)*sum([... for theta in thetas],axis=0)

# Test your function with a plot

thetas0 = ...
ts = arange(...)
plot(ts, y(thetas0,ts))

[ ]: def C(thetas,thetas0,t):
"""Cost function: assumes equally spaced points in time"""
dt = t[1]-t[0]
return sum(dt*...)

thetaEval = arange(0.5,2.5,0.02)
levels = 2.**(arange(-14,-4))
costContours = [[C([th1,th2],thetas0,ts) for th1 in thetaEval] for th2 in␣

↪thetaEval]
fig, ax = subplots()
costContourPlot = contour(thetaEval, thetaEval, costContours, levels=levels)
ax.set_aspect(1)

The diagonal in this plot gives single exponential decays. How well does a single exponential capture
the behavior at �[0]?

(b) Constraining 𝜃1 = 𝜃2, find the point of minimum cost 𝜃min. Where is the point on the contour
plot? Compare the two curves 𝑦𝜃[0](𝑡) and 𝑦𝜃min

(𝑡), and also plot their difference.

[ ]: def toMinimize1exponent(theta):
return C([...],thetas0,ts)

localThetas = arange(1.3,1.5,0.01)
plot(localThetas,[toMinimize1exponent(theta) for theta in localThetas] )

minTheta = minimize(..., 1.5).x
value = toMinimize1exponent(...)
print("Best single theta =", minTheta, " with cost ", value)

Your answer here. Double click to edit. Where is the point on the contour plot?

[ ]: plot(ts, y(thetas0,ts))
plot(ts, y(...,ts))

[ ]: plot(ts, y(thetas0,ts)-y([...],ts))
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One can see from the contour plot that measuring the two rate constants separately would be a
challenge. This is because the two exponentials have similar shapes, so increasing one decay rate
and decreasing the other can almost perfectly compensate for one another.

This clearly is not a deep truth for two exponentials. But the effect is hugely magnified when we
have many parameters. We can see this by computing the eigenvalues of the cost Hessian.

(c) Analytically calculate the Jacobian 𝐽𝑡𝛼 = 𝜕𝑦�(𝑡)/𝜕𝑡𝛼 in the continuum approximation. Using
the Jacobian, show that the Hessian for the cost evaluated at the best fit is

ℋ𝛼𝛽 = 𝜕2𝐶(�, �0)
𝜕𝜃𝛼𝜕𝜃𝛽

∣
�[0]

= 2
𝑁2

1
(𝜃𝛼 + 𝜃𝛽)3 .

Your answer here. (Double click to edit.)

(d) Using your answer from part (c), write a routine to calculate the entire array 𝐻(�). Check it
by examining the eigenvectors and eigenvalues for the 𝑁 = 2 case of part~(b). What do you
predict the ratio $R = $ (long axis/short axis) to be, in terms of the two eigenvalues 𝜆stiffer
and 𝜆sloppier? Are the directions roughly in line with the eigenvectors?

[ ]: def H(thetas):
N = len(thetas)
return [[... for thetaBeta in thetas] for thetaAlpha in thetas]

print(H(thetas0))

vals, vecs = linalg.eigh(H(thetas0))

print("Eigenvalues of N=2, \n", ...)
print("Ratio of long to short axis =", ..., "roughly correct / wrong")
print("Slope of stiff (short) axis = ", ...)
print("Slope of sloppy (long) axis = ", ...)
print("This agrees/disagrees with slope at", thetas0, "in contour plot")

(e) For a sum of seven exponentials, with �[0] = [1, 2, 3, … , 7], construct the Hessian, and find its
eigenvalues. Are they sloppy (roughly equally spaced in log)? By roughly what factor does
each successive eigenvalue shrink?

[ ]: thetas7 = arange(1,8)
Hess7 = H(...)
vals7 = linalg.eigvals(...)
print("Eigenvalues of N=7, \n", ...)
print("Eig ratios = ", ...)
print("These ratios are roughly the same / going to one / getting bigger, \n␣

↪making the system sloppy / not sloppy / sloppier than expected")
print("The ratio of the largest to smallest eigenvalue is", ...)

This sloppiness makes it strikingly difficult to extract the parameter values from the data.

(f) Argue that the number of measurements 𝑛measure needed to estimate a parameter scales in-
versely with its variance (𝑛measure ∼ 1/𝜎2). Given that the eigenvalues of the Hessian give the
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variance along the various eigendirections, by what factor 𝑛sloppy/𝑛stiff is it harder to measure
the parameters along the sloppy directions, for your sum of seven exponentials?

Your answer here. (Double click to edit.)

Measurement errors scale with repeated measurements as 1/√𝑛, so to reduce a measurment error
of 𝜎 to 𝑂(1) takes 1/√𝑛 = 𝜎 so 𝑛 ∼ 1/𝜎2 measurements, which is also the eigenvalue along the
eigendirection. So 𝑛measure = 882, 593, 000 measurements are needed to determine the sloppiest
parameter combination as well as the stiffest parameter is estimated with a single measurement.

(g) Given that the diagonal elements of the inverse cost Hessian, (ℋ−1)𝛼𝛼 are proportional to
the variance in parameter 𝛼 for one sampling of the Gaussian given by the cost, what are the
variances in the seven parameters 𝜃[0]

𝛼 ?

[ ]: Hess7inv = linalg.inv(...)
sigmas = [... for n in range(len(Hess7inv))]
print("Parameter uncertainties = ", sigmas)
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