
Physics 218: Waves and Thermodynamics

Fall 2003, James P. Sethna
Fill Out Before Fourier Lab

Latest revision: September 16, 2003, 9:24

Preparation for Fourier Lab

Complete these exercises before coming to Fourier lab, (Monday evening 9/22 and Thurs-
day afternoon 9/23, Rockefeller B3, hidden around the corner in the basement.) You’ll
need to show the lab TA the comparison between your predictions and what you found
in the lab. These should be quick, since you’ve covered this material thoroughly in your
homeworks.

Definitions: Fourier Series, Fourier Transforms, and FFTs.

The Fourier series for periodic functions of period L is

ỹm = (1/L)

∫ L

0

y(x) exp(−ikmx)dx, (FS1)

where km = 2πm/L. The Fourier series can be resummed to retrieve the original function:

y(x) =

∞
∑

m=−∞

ỹm exp(ikmx). (FS2)

The Fourier transform for functions on the infinite interval is

ỹ(k) =

∫ ∞

−∞

y(x) exp(−ikx) dx (FT1)

where now k takes on all values. We regain the original function by doing the inverse
Fourier transform.

y(x) = (1/2π)

∫ ∞

−∞

ỹ(k) exp(ikx) dk (FT2),

The Fast Fourier transform starts with N equally spaced data points y`, and returns a
new set of complex numbers ỹFFT

m :

ỹFFT
m =

N−1
∑

`=0

y` exp(−i2πm`/N), (FFT1)

with m = 0, . . .N − 1. It’s essentially sampling the function y(x) at equally spaced points
points x` = `L/N for ` = 0, . . .N − 1.

ỹFFT
m =

N−1
∑

`=0

y` exp(−ikmx`), (FFT2)
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I. Sinusoidal Waves and Fourier Series

In the first part of the lab, we will take the Fourier series of periodic functions y(x) =
y(x + L) with L = 20. We will sample the function at N = 32 points, and using a FFT to
approximate the Fourier series and Fourier transform. The Fourier series and transform
will be plotted as functions of k, at −kN/2, . . . , kN/2−2, kN/2−1. (Remember from problem
set 4 that the negative m points are given by the last half of the FFT.)

(a) Find the Fourier series ỹm in this interval for cos(k1x) and sin(k1x). (Hint: they are
zero except at two values of m = ±1.

cos(k1x): ỹ±1 =

sin(k1x): ỹ±1 =

(b) What spacing δk between k-points km do you expect to find? What is kN/2? Evaluate
each as a formula and numerically (i.e. your first answer will be 2π/L = π/10 =
0.31416).

δk =

kN/2 =

The Fourier series ỹm runs over all integers m. The fast Fourier transform runs only over
0 ≤ m < N . There are three ways to understand this difference: function space dimension,
wavelengths, and aliasing.

Function space dimension. The space of periodic functions y(x) on 0 ≤ x < L is
infinite, but we are sampling them only at N = 32 points. The space of possible fast
Fourier series must also have N dimensions! Now, each coefficient of the FFT is complex
(two dimensions), but the negative frequencies are complex conjugate to their positive
partners (giving two net dimensions for the two wavevectors km and k−m ≡ kN−m). If
you’re fussy, ỹ0 has no partner, but is real (only one dimension), and if N is even ỹ−N/2

also is partnerless, but is real. So N k-points are generated by N real points!

Wavelength. The points that we sample the function are spaced δx = L/N apart. It
makes sense that the fast Fourier transform would stop when the wavelength becomes close
to δx: how can we resolve wiggles shorter than our sample spacing?

(c) Give a formula for y` in equation (FFT1) for a cosine wave at kN , the first wavelength
not calculated by our FFT. It should simplify to a constant. Give the simplified
formula for y` at kN/2, the first missing wavevector after we’ve shifted the large m’s
to N − m to get the negative frequencies.

y` = y(x`) = cos(kNx`) =

y` = y(x`) = cos(kN/2x`) =
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So, the FFT returns Fourier components only until there is one point per bump (half-
period) in the cosine wave.

Aliasing. Suppose our function really does have wiggles with shorter distances than our
sampling distance δx. Then it’s fast Fourier transform will have contributions to the long-
wavelength coefficients ỹFFT

m from these shorter wavelength wiggles: specifically ỹm±N ,
ỹm±2N , etc.

(d) Let’s work out a simple case of this: a short-wavelength cosine wave. You showed in
problem 4.6(b) that, on our sampled points x`, exp ikm±Nx` = exp ikmx`. Show that
the short wavelength wave cos(km+Nx`) = cos(kmx`), and hence that its fast Fourier
transform will have bogus contributions at the long wavelength km.

II. Gaussian Packets and Fourier Transforms

In the second part of the lab, we will consider the Fourier transforms of certain functions
defined on an infinite interval. The most important of these is the Gaussian, which you
worked with in problem set 3:

G(x) =
1√
2πσ

exp
(

−(x − x0)
2/2σ2

)

. (3.5.3)

We’ll study how the Fourier transform G̃(k) = exp(−ikx0) exp(−σ2k2/2) changes as we
change the width σ and the center x0.

Notice that when we make the Gaussian narrower (smaller σ) its Fourier transform gets
wider. Shorter lengths mean higher frequencies.

(a) Show that this is true in general. Change variables in equation (FT1) above to show
that if z(x) = y(Ax), that z̃(k) = ỹ(k/A)/A.

Notice that when we move the center of our function x0, the Fourier transform gets mul-
tiplied by a phase exp(−ikx0) = cos(kx0) − i sin(kx0).

(b) Show that this is true in general: change variables in equation (FT1) above to show
that if z(x) = y(x−x0) that z̃(k) = exp(−ikx0)ỹ(k). How does this change the power
spectrum |z̃(k)|2?
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