
Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 1, due Monday Sept. 2
Latest revision: September 3, 2002, 10:35

Reading
Elmore & Heald, section 1.1
Feynman, I.22-5/6

Problems

(1.1) Deriving Wave Equations. A small horizontal string of density λ and tension τ is
vibrating inside a viscous fluid. It is subject to a transverse viscous force b ∂η/∂t per unit
length so as to oppose the transverse motion of the string. In addition, it is subject to an
external gravitational force. Generalize the derivation of equation (1.1.2) to incorporate
these effects of viscosity and gravity. Make sure to draw the appropriate free body diagram
for the chunk of string.

(1.2) Fourier Series. The laws for the motion of stretched strings, of the surface of
water, of sound, and of electromagnetic radiation are called wave equations because they
all have special solutions of the form of sinusoidal waves. That is, a string with initial
height A sin(kx) or B cos(kx) will time evolve in a particularly simple way. We need to
review some mathematics about sinusoidal waves.

(a) (Review) What is the wavelength of the shape A sin(kx), where x is the distance
measured along the string?

We call k the wave vector for the wave.

(b) (Review) Suppose we study a stretched string with the ends at x = 0 and x = L held
fixed at height y = 0. Calculate the values km at which η(x) = A sin(kx) satisfies
these two boundary conditions. (To be specific, let m − 1 be the number of zeros, or
nodes, for y(x) inside the string, not including the boundaries. For this problem, all
values of km should be positive.)

In this course, we will make extensive use of complex numbers. In quantum mechanics,
the waves really involve complex amplitudes, but for this course the complex numbers are
just a way to make the mathematics simpler: our waves will be the real parts of complex
waves. You should remember the formula

exp(ikx) = cos(kx) + i sin(kx). (1.2.1)

Thus cosine waves are the real part of the complex wave exp(ikx).

(c) (Review) For what value of δ is the real part of exp(i(kx + δ)) a sine wave, sin(kx)?

The Fourier series for a function y(x) is an expansion in terms of sinusoidal waves. Elmore
and Heald concentrate on the Fourier sine and cosine expansions. In our work, we’ll use
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complex Fourier series. Suppose we have a function y(x) defined on 0 ≤ x ≤ L, with
y(0) = y(L).† Various mathematical theorems tell us that we can write y(x) as an infinite
series

y(x) =
∞∑

m=−∞
ỹm exp(ikmx). (1.2.2)

in terms of the complex sinusoidal waves exp(ikmx) which satisfy the same boundary
condition.

(d) For what values km does a single term of the sum (1.2.2), y(x) = exp(ikmx) satisfy
y(0) = y(L)? More specifically, give a formula for km, the wave vector giving m
wavelengths inside the range 0 ≤ x ≤ L (here km may be positive or negative). Is this
the same as your answer to part (b)?

The formula for the complex Fourier series coefficients ỹm of a function y(x) in an interval
of length L is

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx. (1.2.3)

Mathematical theorems tell us that the sum in equation (1.2.2) converges to y(x) if we use
the coefficients from equation (1.2.3). Also, the coefficients are unique: if the coefficients
aren’t all the same, the functions are different.

(e) Use equation (1.2.3) to compute the Fourier coefficients ỹm with m = −1, 0, and 1, for
cos(2πx/5), in an interval of length L = 5. Check this using the well-known formula
cos(θ) = (exp(iθ) + exp(−iθ)) /2. Without using the formula (1.2.3), but using the
fact that the coefficients are unique, give all the Fourier coefficients for 7 sin(38πx/5),
again with L = 5. (Hint: what’s the formula for sin(θ)?)

Decomposing a function into a Fourier series, equation (1.2.2), is like writing a vector as
a sum v = axx̂ + ayŷ + az ẑ. Instead of a three-dimensional space of vectors, we have an
infinite-dimensional space of functions. Our “unit vectors” are the complex exponential
waves exp(ikmx). Finding the coefficients, equation (1.2.3), is like taking the dot product
to find the coefficient in the expansion, ax = v · x̂, etc., except that the dot product of two
complex functions is generalized to an integral of one times the complex conjugate of the
other,

f · g = (1/L)
∫ L

0

f(x)g∗(x) dx. (1.2.4)

(f) Orthonormality. The dot products of different unit vectors x̂ · ẑ = 0: they are
orthogonal to one another. Also, the unit vectors are normalized, so x̂ · x̂ = 1. Show
that the corresponding things are true of our Fourier series functions. Compute the
Fourier series coefficients ỹm of the function y(x) = exp(iknx) by doing the integral
in equation (1.2.3). (Hint: each coefficient should end up to be either be one or zero.)

† This is called periodic boundary conditions, since we can make y into a periodic func-
tion by placing new copies side-by-side over each period L. The problem in part (b), fixed
at zero at the two ends, of course is a good example of a function of this type.
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 2, due Monday Sept. 9
Latest revision: September 6, 2002, 18:5

Reading

Elmore & Heald, sections 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
Feynman, sections I.22-5, I.22-6, I.23 Feynman, sections I.50-1/4

Problems

Elmore & Heald, page 7, problems 1.2.2 (traveling waves), 1.2.3 (stationary initial condi-
tion), and 1.2.6 (reflection, fixed boundary); page 13, problem 1.3.2 (b).

Quick ones.

Elvis. Elvis notices that his A string on his guitar is off pitch: it is vibrating at 430 Hz.
He wants it to sound at 440 Hz.
(a) Is his guitar string sharp (too high pitch) or flat (too low)?
(b) Elvis twists the little knob at the top of the string to tune it to 440 Hz. Did he tighten

or loosen the tension?
(c) By what percentage does he change the tension?

Sympathetic Vibration. Consider two strings of equal mass density and length. When
the strings are near each other, starting string 1 vibrating in its fundamental mode causes
string 2 to vibrate in its fifth (n=5) natural mode. What is the ratio of the tension of
string 1 to string 2?

Numerical Derivatives. The angle θ(t) of a pendulum is measured at three different
times: θ(1.8) = 0.72, θ(2.0) = 0.78, and θ(2.2) = 0.82. Estimate the accelleration ∂2θ/∂t2

at t = 2.0.

Big ones.

(2.1) Solving the Wave Equation Numerically

Consider a string of length L that is shaken up and down at the left end η(0, t) = f(t) and
is fixed in position η(L, t) ≡ 0 at the right end.

∂2η

∂t2
= c2 ∂2η

∂x2
(1)

To solve this equation numerically, we must discretize the string into chunks of size δx in
space, and take small, discrete time steps δt in time.
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(a) Derive the approximate formula for the second derivative

∂2η

∂x2
≈ η(x + δx, t) − 2η(x, t) + η(x − δx, t)

δx2
(2)

from the approximate formula for the first derivative

∂η

∂x
(x0) ≈ η(x0 + ε/2) − η(x0 − ε/2)

ε
. (3)

(Hint: pick ε = δx and x0 = x ± δx/2. It may help to draw a picture of where you
are evaluating the first and second derivatives.)

(b) Applying this approximate formula to the wave equation (1), show that we can write
the future position of the string in terms of the past and present. If our wire is broken
up into N chunks of size δx = N/L,

x0 ≡ 0, x1 = δx, . . . xN = Nδx ≡ L (4)

show that

η(xi, t + δt) ≈ 2η(xi, t) − η(xi, t − δt) + (c δt/δx)2 (η(xi+1) − 2η(xi) + η(xi−1)) . (5)

Notice that this equation applies for i = 1, . . .N − 1, but not for i = 0 or i = N .
These boundary conditions have to be supplied separately: in our case, fixed on the
right, forced on the left.

(c) Write a program (using Matlab, Mathematica, a spreadsheet, or any other method
of your choice) to solve this wave equation with L = 15m, c = 2m/s, δx = 0.5m,
δt = 0.1s, and

f(t) = exp(−(6 − t)2/8). (6)

Use the evolution equation (5) and the initial conditions

η(xi, 0) ≡ η(xi,−δt) ≡ 0. (6)

When should the pulse center hit the right end of the string? Plot the pulse shape
when the center is partway to the wall, when your analysis says it should be hitting
the wall, and after it is reflected. Where do you think the energy is stored when the
pulse is at the wall?

(2.2) Fourier Series and Gibbs Phenomenon
We defined complex Fourier series in the last problem set:

y(x) =
∞∑

m=−∞
ỹm exp(ikmx), (1.2.2)
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Figure 2.2.1 Step Function.

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx, (1.2.3)

with km = 2πm/L. In this problem set, we’ll look at the Fourier series for a couple of
simple functions, the step function (above) and the triangle function.

Consider a function y(x) which is A in the range 0 < x < L/2 and minus A in the range
L/2 < x < L (shown above). It’s a kind of step function, since it takes a step downward
at L/2.∗

(a) As a crude approximation, the step function looks a bit like a chunky version of a sine
wave, A sin(2πx/L). In this crude approximation, what would the complex Fourier
series be?

(b) Calculate the complex Fourier series of the step function y(x) above, for general m.
Which coefficients are zero? Check that the coefficients ỹm with m = ±1 are similar
to those you guessed in part (a): the ratios should fairly near to one.

(c) Setting A = 2 and L = 10, plot the partial sum of the series equation (1.2.2) for
m = −n,−n + 1, . . . , n with n = 1, 3, and 5. (You’ll likely need to combine the
coefficients ỹm and ỹ−m into sines or cosines, unless your plotting package knows
about complex exponentials.) Does it converge to the step function? If it is not too
inconvenient, plot the partial sum up to n = 100, and concentrate especially on the
overshoot near the jumps in the function at 0, L/2, and L. This overshoot is called the
Gibbs phenomenon, and occurs when you try to approximate functions with jumps.

∗ It can be written in terms of the standard Heaviside step function Θ(x) = 0 for x < 0
and Θ(x) = 1 for x > 0, as y(x) = A (1 − Θ(x − L/2)).
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One of the great features of the Fourier series is that it makes taking derivatives and
integrals easy.

(d) Show that the Fourier series of the derivative of a function y′(x) = dy/dx is ỹ′
m =

ikmỹm. Show, for m �= 0, that the Fourier series for the integral of a function y(x) is
ỹm/(ikm).

What does the integral of our step function look like? Let’s sum the Fourier series for it!

(e) Consider the Fourier series whose coefficients are ỹm/(ikm), where ỹm is the complex
Fourier series you defined in part (b), and where you can set the m = 0 coefficient to
zero. This series should sum to an integral of the step function. Do partial sums up
to ±m = n, with n = 1, 3, and 5, again with A = 2 and L = 10. Would the derivative
of this function look like the step function? If it’s convenient, do n = 100, and notice
there are no overshoots.
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 3, due Monday Sept. 16
Latest revision: September 15, 2002, 15:47

Reading
Elmore & Heald, sections 1.6, 1.7, 1.8, 1.9
Feynman, I.23, I.49-1/2, I.50-1/4

Problems

Elmore & Heald, page 38, problems 1.8.1 (Steel wire), 1.8.4 (Continuity equation for energy
density).

(3.1) Traveling Wave on a String. The figure below shows a traveling wave propagating
to the right on a string at time t = 0. The tension is 8N and the string has mass per unit
length 2kg/m. The string has length 10m and has a fixed end at x = 0 and a free end at
x = 10m.

2 m/s
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X (m)

η

(a) Draw a graph of the transverse velocity (chunk velocity) of the wave at time t = 0,
labeling your axes and giving units.

(b) Draw graphs of the energy density, the power, and the momentum density of the wave
at t = 0.

(c) Draw graphs of the height of the wave and its transverse velocity at t = 4 seconds.
Show that the total energy is the same as that at t = 0. Is the total momentum the
same?

(d) Draw a graph of the transverse velocity at x = 5 as a function of time, from t = −1
second to t = 4 seconds.

(e) A new pulse of the same shape but twice as high and half as wide is sent down the
wire. The energy density plot will be half as wide (why?) and how many times as
tall? How much will the total energy change?
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(3.2) Aluminum Rod. Postponed until problem set 4.

(3.3) Pythag: Resonance.

We’ll be using a few computer simulations to illustrate ideas from the course. We don’t
expect long writeups. Download the program pythag, from the course Web site (or directly
from links at the bottom of

http://www.physics.cornell.edu/sethna/teaching/sss/pythag/pythag.htm).
The download will contain several programs: look for pythag.exe.

Play with the program for a while. Observe the effects of fixed, free, and reflectionless
boundary conditions. Using fixed boundary conditions on both sides, and “Wave” forcing
on the left, hit “Initialize” and “Run”: the system is periodically forced on the left bound-
ary at a frequency Ω and with an amplitude A that you can set on the Configure menu.
Change Ω to 10 rad/s, A to 0.01, and the time to run on the main controls to 10 s. (You
need to hit Enter to get changes to register: the number turns red to warn you.) Notice
that the string wiggles under the external forcing, but the amplitude never gets very large.

Now, using the tension τ , the mass per unit length µ1 (what Elmore & Heald calls λ0),
and a length L (all given under the Configure menu), find the frequencies ωm of the
standing waves. Change the frequency of the forcing frequency Ω to the frequency ω1 of
the fundamental mode, and reduce A to 0.002. How does the amplitude in the fundamental
mode build up? The small graph on the lower left shows the height Y of the center of the
string (our η) as a function of time: it should be oscillating with an increasing amplitude
ηmax ∼ tζ as the resonance builds up. Do the peaks seem to be growing linearly in time
(ζ = 1), or quadratically (ζ = 2), or what?

In your writeup, we’d like to see the frequency that you forced the program to excite the
fundamental, and a brief, qualitative description of the growth of the oscillation peaks in
time.

(3.4) Pythag: Energy and Power.

Let a pulse be traveling down the string at the velocity of sound η(x, y) = f(x − vt). Use
the fact that this is a traveling wave to derive a formula giving the ratio of the potential
energy density to the kinetic energy density. Restart pythag (or select DEFAULT on the
presets), and verify your formula. (For the writeup, just note the maximum amplitude for
the kinetic and potential energy densities KE and PE.)

Derive a formula relating the power and the total energy density u for a traveling wave.
Verify your formula with pythag.

Be sure to remember: these two formulas only apply to traveling waves!

(3.5) Fourier Transforms

In problem set 1, we defined the complex Fourier series of a function confined to an interval
(0, L). Waves on strings, rods, and in boxes and tanks are all confined to defined regions,
but many waves are unconfined. Fourier transforms are like Fourier series, except that
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the range of the function goes from (−∞,∞). The Fourier transform of a function y(x) is
another function ỹ(k):

ỹ(k) =
∫ ∞

−∞
y(x) exp(−ikx) dx (3.5.1)

and you can retrieve the original function back by using the inverse Fourier transform:

y(x) = (1/2π)
∫ ∞

−∞
ỹ(k) exp(ikx) dk (3.5.2).
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Figure 3.5.1 Gaussian Pulse centered at x0 = 0 of width σ = 1.

The famous function
G(x) =

1√
2πσ

exp(−(x − x0)2/2σ2)

is usually called a normal distribution or a normalized Gaussian. It peaks at x0, and as
x− x0 → ±∞ the Gaussian dies rapidly to zero (because of the exponential of minus x2).
In fact, it starts getting small at about |x − x0| = ±σ. Thus the function is a pulse of
width σ centered at x0. It is of fundamental important in probability theory, in quantum
mechanics, and in statistical mechanics (last month of this course). It is also a good
example of a pulse (like the sound you might get from slapping your hand on the table).
Let’s call G0(x) the Gaussian with mean x0=0 and width σ = 1, pictured above.

(a) Show that the Fourier transform G̃(k) = exp(−ikx0)G̃0(σk), by changing variables in
equation (3.5.1) from x to z = (x−x0)/σ. Notice that you should not need to do any
integrals!

The Gaussian G(x) has some nice properties: the integral (norm)
∫ ∞
−∞ G(x) dx = 1, the

mean
∫ ∞
−∞ xG(x) dx = x0, the variance (or square of the width)

∫ ∞
−∞(x−x0)2G(x) dx = σ2.

Also, the Fourier transform of the standard Gaussian G0(x) of width one and mean zero
G̃0(k) = exp(−k2/2). The derivation for three of these four formulas is a bit tricky, so
treat them as given.

(b) Using the formulas above and your answer for part (a), give the general formula for
the real and imaginary parts of G̃(k). Draw pictures of the answer for σ = 2 and
x0 = 4, going from k = −2.5 to k = 2.5.

The Fourier transform of a Gaussian centered at zero is another Gaussian! It’s not nor-
malized, though: its height is always one at k = 0.
(c) In general, the value of the Fourier transform ỹ(k) at k = 0 gives which basic property

of y, the norm, mean, or variance?
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 4, due Monday Sept. 23
Latest revision: September 27, 2002, 10:44

Experimental Lab I
Standing Waves, Monday evening 9/16 and Thursday afternoon 9/19, Rock B26 and B30.

Computer Lab
Fourier Series, Monday evening 9/23 and Thursday afternoon 9/26, Rock B3 (hidden
around the corner in the basement).

Reading
Elmore & Heald, sections 4.1, 4.7, 12.1, 12.2
Feynman I.47, I.48-1/4, I.50-1/4

Problems
Elmore & Heald, page 41, problems 1.9.2 (Bead on a String). Use Pythag to see that the
pulse indeed does not stay the same shape: (a) set reflectionless boundary conditions on
both sides, (b) force with a pulse on the left, (c) make µ2 = 20, (d) make X12 = 4.99 and
X23 = 5.01, (e) set the graph time step to one and the amplitude A to 0.1.

(4.1) Aluminum Rod. A one meter aluminum rod is hanging horizontally in the air.
On the left at x = 0, it is rigidly clamped at the wall (no longitudinal motion possible at
x = 0). On the right at x = 1 m, it is hanging freely in the air.

1 m

A physicist hears a tone from the rod at f1 = 1250 Hz, which she figures out is the
fundamental standing-wave frequency of the rod with boundary conditions as discussed
above. (Frequencies f in Hertz are in cycles per second, and are different from frequencies
ω in radians per second: f = ω/2π.)
(a) Graph the horizontal displacement of the rod s(x) versus x for the fundamental mode.

Assume a maximum displacement of 0.01mm.
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(b) She then attaches a piezoelectric transducer to the free end of the rod and looks for
higher frequency standing waves. What will be the next two resonant frequencies f2

and f3 above the fundamental? Draw graphs of the longitudinal displacements of the
two next modes.

(c) The rod is now gently clamped at a distance 2/3 m from the wall, with a felt pad
which dissipates energy when rubbed.

1 m

2/3 m

Which of the three standing waves (frequencies f1, f2, or f3 in part (B)) will the experi-
mentalist find is damped the least?

(4.2) Fourier wave. A musical instrument playing a note of frequency ω1 generates a
pressure wave P (t) periodic with period 2π/ω1: P (t) = P (t+2π/ω1). The complex Fourier
series of this wave is zero except for n = ±1 and ±2, corresponding to the fundamental ω1

and the first overtone. At n = 1, the Fourier amplitude is 2 − i, at n = −1 it is 2 + i, and
at n = ±2 it is 3. What is the pressure P (t)?

(A) exp ((2 + i)ω1t) + 2 exp (3ω1t)
(B) exp ((2ω1t)) exp (i(ω1t)) ∗ 2 exp (3ω1t)
(C) cos 2ω1t − sinω1t + 2 cos 3ω1t

(D) 4 cos ω1t − 2 sinω1t + 6 cos 2ω1t

(E) 4 cos ω1t + 2 sinω1t + 6 cos 2ω1t

(4.3) Pythag: Reflection and Transmission.

Start up pythag, and choose the PRESET for STEPDOWN. The string comes in two
pieces, whose mass densities µ1 and µ2 can be read off the Configure menu. The thickness
of the lines roughly corresponds to the mass densities. To repeat a run, first Initialize,
then Run.

Notice some qualitative facts. (1) The pulses leaves the simulation without reflection at
the boundaries. I had to carefully match impedences at the boundary to avoid reflections.
(2) Notice that the string is continuous and has a continuous derivative at the junction.
(You can slow the pulse by lowering ”graph time skip” on the Configure menu.) (3) How
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do the widths of the reflected and transmitted pulses compare to the incident pulse? How
about their duration in time, passing by a particular place? Why should their durations
agree? (4) Which is largest, the incident, reflected, or transmitted pulse? According to
your transmission formula, should that always be the case if µ2 < µ1? (5) Does the
reflected pulse invert or not? How about the reflected pulse for STEPUP? By taking the
limits where the mass density ratio goes to zero and infinity, argue why this is related to
reflection at fixed and free boundary conditions.

(4.4) Reflection and Transmission.

A pulse of height AI , width XI , travels on a string of mass density µ1 and is incident on
a string of mass density µ2 = 9µ1. The strings are joined together, and have the same
tension. Which picture correctly describes the string after the pulse has interacted with
the junction between the two strings? The pictures are drawn to scale.

(4.5) Atoms: Dispersion and the 1-D Crystal.
In lecture we derived the equation of motion for the longitudinal displacements un of the
nth atom in a chain of atoms connected by springs,

∂2un

∂t2
= (K/M)[un+1 − 2un + un−1] (4.5.1)

where K is the spring constant and M is the atomic mass. Assume a plane-wave solution

un = sin (kna − ωt) (4.5.2)

where a is the equilibrium distance between atoms.

(a) Dispersion Relation. Plug in the trial solution equation (4.5.2) into equation (4.5.1).
Rewrite un±1 by expanding the sines, sin (k(n ± 1)a − ωt) = sin ((kna − ωt) ± ka) =
sin (kna − ωt) cos (ka)± cos (kna − ωt) sin (ka) and hence write your equation in the form
−ω2 (BLAH) = f(k) (BLAH). Solve for the dispersion relation, the frequency ω(k) for
each wave-vector k in our one-dimensional crystal.
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(b) Continuum Limit. What is the speed of sound for our chain at long wavelengths?
To be specific, what is ω(k)/k (the phase velocity) as the wavelength goes to infinity and
hence k → 0? (A Taylor series under the square root might be useful.)

In the regular wave equation, where ω(k) = c k, both the group velocity dω/dk and the
phase velocity ω(k)/k give the speed of sound, independent of k.

(c) Plot ω(k), the group velocity, and the phase velocity for our one-dimensional crystal,
as a function of the wave-vector k, for K/M = a = 1, for −π/a < k < π/a.

(4.6) Fourier Series, Fourier Transforms, and FFTs.
In problem set 1, we introduced the Fourier series for periodic functions of period L,

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx, (1.2.3)

where km = 2πm/L. The Fourier series, we saw explicitly in problem set 2, can be
resummed to retrieve the original function:

y(x) =
∞∑

m=−∞
ỹm exp(ikmx). (1.2.2)

In problem set 3, we introduced the Fourier transform for functions on the infinite interval

ỹ(k) =
∫ ∞

−∞
y(x) exp(−ikx) dx (3.5.1)

where now k takes on all values. We regain the original function by doing the inverse
Fourier transform.

y(x) = (1/2π)
∫ ∞

−∞
ỹ(k) exp(ikx) dk (3.5.2),

~ y(
k)

kkkkkk 0−1−2−3−4−5
... k0 k k k k1 2 3 k4 5

Figure 4.6, Approximating the integral as a sum. By approximating the integral
ỹ(k) exp(−ikx) over k as a sum over the equally spaced points km, we can connect the
formula for the Fourier transform to the formula for the Fourier series.
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(a) Series → Transform. Let y(x) be a smooth function which is zero outside (0, L).
By what constant do you need to multiply the Fourier series coefficient ỹm to get the
Fourier transform ỹ(km)? Approximating the Fourier transform integral (3.5.2) as a
sum (as shown in Figure 4.6), explain or derive the factor (1/2π) in equation (3.5.2).

As we take L → ∞ the spacing between the points km, 2π/L, gets smaller and smaller,
and the approximation of the integral as a sum gets better and better.

There is a remarkably fast numerical method, called the Fast Fourier transform. It starts
with N equally spaced data points y�, and returns a new set of complex numbers ỹFFT

m :

ỹFFT
m =

N−1∑
�=0

y� exp(−i2πm�/N). (4.6.1)

(b) FFT → Series. We can use the FFT to give an approximation to the Fourier series.
Let y� = y(x�) where x� = L(�/N). As in part (a), approximate the Fourier series
integral (1.2.3) above as sum over y�. For small positive m, give the constant relating
ỹFFT

m to the Fourier series coefficient ỹm. The Fourier series is defined for both positive
and negative m, where the FFT gives only positive m. For small negative m, show
that you can find the Fourier series coefficient by looking at the FFT near the end of
the list: ỹm ∝ ỹFFT

N+m.
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 5, due Monday Sept. 30
Latest revision: September 27, 2002, 10:53

Computer Labs

Fourier Series and Transforms, Monday evening 9/23 and Thursday afternoon 9/26, Rock
B3 (hidden around the corner in the basement).

Prelim I

Prelim I is scheduled in two weeks, Monday October 7 (subject to discussion in class).
The content will focus on the homework, with some questions from the experimental lab
Standing Waves and the two Fourier labs. There will be several multiple-choice questions
(no partial credit) and one or perhaps two longer multiple-part essay questions. Next
Monday, instead of a problem set, I will pass out copies of last year’s Prelim I for you to
use while studying.

Reading

Elmore & Heald, sections 5.1-5.3, 5.10, 12.3/5
Feynman, section I.48-5/6, I.49-3/5, I.50-5/6, I.51 1/2, I.52, II.25-10.

(5.1) Translation of Problem Set 1 into Modern Language.

The first two questions assigned in problem set 1 are roughly equivalent to the following
question, posed in a form that would be appropriate in a graduate physics special topics
course:

“Incorporate into the wave equation the leading order terms breaking time-reversal
invariance and invariance under changing the sign of the order parameter. Give a
possible physical origin for each term.”

You’ve already solved this problem: we just want you to translate the question into the
language of modern condensed-matter physics (as we began to discuss in class). (a) Which
term, gravity or friction, breaks time-reversal invariance? (b) Which term breaks invariance
under changing the sign of the order parameter?

(5.2) Decibels. Look up the decibel scale on the Web. The threshold of hearing is
around zero decibels (0 dB). From this and your knowledge of air and sound, estimate
the amplitude of the vibration of your eardrum at the threshold of audibility. (The bulk
modulus of air B is about 1.4×105 N/m2; the density of air is about 1.2 kg/m3; the speed
of sound in air is about 340 m/s; a typical sound frequency might be 1000 Hz.) Compare
this with other natural scales of length: which is it closest to, the size of your ear, the
width of a hair in your cochlea, the width of a cell, the width of an atom, ....
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(5.3) Sine-Gordon Dispersion Relation.

An array of pendula connected by springs, in the continuum limit, obeys the Sine-Gordon
equation

∂2φ/∂t2 = A∂2φ/∂x2 − B sin(φ).

with φ(x) = 0 corresponds to the pendulum at position x along the array pointing down-
ward. What is the dispersion relation ω(k) for small oscillations in this equation?

(A) ω(k) =
(−B ±√

B2 − 4Ak2
)
/2A

(B) ω(k) =
√

Ak2 − B sin(φ)

(C) ω(k) =
√

Ak2 − B

(D) ω(k) =
√

Ak2 + B

(E) ω(k) =
√

Ak2 + B sin(φ)

(5.4) Deriving New Laws.

The evolution of a physical system is described by a field Ξ, obeying a partial differential
equation

∂Ξ/∂t = A ∂Ξ/∂x. (S3.1)

(a) Symmetries.
Give the letters corresponding to ALL the symmetries that this physical system appears
to have:
(A) Spatial inversion (x → −x).
(B) Time reversal symmetry (t → −t).
(C) Order parameter inversion Ξ → −Ξ).
(D) Homogeneity in space (x → x + ∆).
(E) Time translational invariance (t → t + ∆).
(F) Order parameter shift invariance (Ξ → Ξ + ∆).

(b) Traveling Waves. Show that our equation ∂Ξ/∂t = A ∂Ξ/∂x has a traveling wave
solution. If A > 0, which directions can the waves move?

2



(5.5) Sawtooth Wave.
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Triangle Wave
n=2
n=4

Triangle Wave and Fourier Decomposition
Traveling to Right

A sound wave generator generates a triangular pressure air wave moving toward the right
down a hollow tube, as shown in the figure above. The triangles repeat forever with
wavelength L. The maximum displacement of the wave is A, the velocity of sound is v,
and the bulk modulus for air is B.

(a) What is the intensity (power per unit area) traveling down the tube?

The figure shows the Fourier series for our wave truncated at n = ±2 and n = ±4.

(b) We now want to decompose this intensity into different frequencies. What would the
time average Iav

n for the intensity of a single traveling plane wave of wave vector kn

and amplitude an, un(x, t) = an sin (kn(x − vt))? (Leave your answer in terms of an

and kn.)

The Fourier series for the displacement of the wave is

u(x) =
∞∑

n=0

an sin(kn(x − vt))

with kn = 2πn/L. The Fourier coefficients are an = 0 for n even, and

an = (−1)(n−1)/28A/(π2n2)

for n odd.

(c) Verify explicitly that the sum of the intensities per frequency channel n you calculated
in part (b) equals the total intensity you calculated in part (a). You’ll need the formula
π2/8 = 1 + 1/32 + 1/52 + 1/72 + . . .

This is Feynman’s energy theorem, section I.50-5: the energy of the sum of different Fourier
waves is the sum of the energies of the individual waves. This is why we can talk about
the power spectrum of a wave: you can think of the power at different frequencies as being
independent of one another.
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(5.6) Pythag: Group velocity, phase velocity, and dispersion.

Start up Pythag. Choose Packet forcing on the left-hand side: this yanks on the left
with an amplitude given by a Gaussian pulse of FWHM 0.015 seconds times a sinusoidal
modulation of frequency Ω = 300 radians per second. Hit Initialize and Run, and watch
the packet bounce back and forth. As is usual with the wave equation, the pulse propagates
without changing in shape. This is only true, however, so long as the pulse does not change
much on the length scale given by the distance between points δx on the numerical string.

Open the Configure menu. Change Ω to 800 and FWHM to 0.015. To slow down the
pulse, change graph time skip to 1. You should now see a pulse which changes shape as it
moves.

(a) Is the group velocity faster or slower than the phase velocity? This is easiest to see
by looking at the pulse early on, before it stretches out: do the peaks within the wave
of the carrier frequency move forward faster or slower than the pulse as a whole?

After several passes across the window, you should see a broad pulse, which has longer
waves on one side than the other.

(b) Does the leading edge have longer or shorter wavelength than the trailing portion of
the packet? Which wavelengths move faster, the long wavelengths or the short ones?

This is called chirping. Try making a sound that goes up in pitch at the end: what does
it sound like?

(c) Do these two answers agree with what you found for the dispersion relation in problem
set 4?

Now change the number of string pieces (chunks) to 999 (the largest value allowed), and
change the graph time skip back to 20.

(d) Does the dispersion go away when you reduce the spacing δx in this way?
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 6, due Wednesday Oct. 16
Latest revision: October 10, 2002, 9:12

Reading

Elmore & Heald, sections 9.0-9.1 (WKB)

Feynman, section I.26 (Least Time), I.27 (Geometrical Optics), I.31 (Refractive Index).
In the last chapter, you’ll need to take equation 30.18 (the field produced by a sheet of
oscillating charge) on trust.

Experimental Lab II

Microwaves and Optics, Monday evening 10/7 and Thursday afternoon 10/10, Rock B26
and B30.

Problems

Elmore & Heald, page 313, problems 9.1.2 (WKB from complex exponential), and 9.1.3
(derivation of amplitude).

(6.1) Optical Fibers and Total Internal Reflection. An optical fiber consists of a
glass core (index of refraction n1) surrounded by a coating (index of refraction n2 < n1).
Suppose a beam of light enters from air obliquely at an angle θ with the fiber axis as shown
in the figure below.

(a) Show that the greatest possible value of θ for which a ray can be propagated down
the fiber without leaking out is given by θ = sin−1(n2

1 − n2
2)

1/2. Assuming that the
glass and coating indices of refraction are 1.55 and 1.50, respectively, calculate θmax.

(b) What would the critical angle be if the outer layer of glass were not there?

1



(6.2) Michelson Interferometer. As one of the mirrors of a Michelson interferometer
is moved through a distance of 0.163 mm, 500 bright fringes move across the field of view.
What is the wavelength of the light illuminating the mirrors of the interferometer?

(6.3) Reflectionless Coatings. A string has three segments, the first of densities µ1 =
0.1kg/m, the second a short segment of density µ2 = 0.05 kg/m, followed by a segment of
density µ3 = 0.025. The string is under tension τ = 160N. Sinusoidal waves of frequency
ω = 300rad/s impinge from the left.

(a) How long should the middle segment be to minimize the reflection?

This is an example of a reflectionless coating. Your glasses may have such a coating,
designed to reduce the reflections of light from their surface. (It’s much more work to
design one that works at all wavelengths. . . )

(b) Check your answer to part (a) with Pythag. The REFJUMP preset should set things
up properly. Test to make sure your answer does indeed give less reflection than longer
or shorter segments. (Zooming in on the reflected pulse on the y(t) plots makes it
easy to measure the amplitude to high accuracy.)
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 7, due Monday Oct. 21
Latest revision: October 16, 2002, 7:52

Reading

Elmore & Heald, sections 5.5-5.7 (Waves in 3D Fluids)

Feynman, section I.28 (Dipole Radiator), I.29 (Interference), I.30 (Diffraction), II.20-4
(Spherical Waves)

Problems

Elmore & Heald, page 78, problem 3.2.2 (bulk moduli for gasses).

Elmore & Heald, page 147, problem 5.3.1 (plane wave). Use equation 5.1.8 instead of
equation 5.3.1 in the first problem. I recommend calculating the acceleration first, and
working backward to the displacement and velocity fields. You may skip showing that the
wave is irrotational.

(7.1) Sound Wave Interference.
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6m

Suppose there are two loudspeakers emitting spherical sound waves, a distance d = 6m
apart along the y axis (at x = 0, y = ±3m). The sources emit sound at the same frequency,
and are in phase. Consider the point B at x = 8m, y = 3m, directly in front of one of the
loudspeakers. If the wavelength of sound is two meters, is there constructive or destructive
interference? How about a wavelength of 4m? Check these qualitatively using the program
Huygens, which you downloaded along with Pythag for an earlier assignment. (Put “X
Screen” to 8 m, d to 6 m, and the screen size to something sensible.) Is the intensity

1



exactly zero for the case of destructive interference?∗ (Zoom in on the graph with the
right mouse button.) Why not? What relative intensity I+3/I−3 of the sources would
produce zero sound level at B for the destructive case, for point sources of sound?

(7.2) Double Thin Slit. A double slit with slit separation d is illuminated by coherent
light of wavelength λ. The lower slit is covered by a piece of glass of thickness t and
refractive index n = 1.3. An interference pattern is observed on a screen a distance
D >> d away. (a) At what angle θ will the principle m = 0 maximum of the interference
pattern be? (You may assume that θ is small.) (b) At what minimum thickness will the
interference pattern show destructive interference at θ = 0?

(7.3) Introduction to Tensors. In the next few weeks, we’ll make heavy use of tensors.
Tensors are a generalization of vectors and matrices: vectors vi are one-index tensors,
matrices Mij are two-index tensors, and we’ll be making use of three and four-index tensors
like cijk� in our discussions of elasticity in solids. Just as for a vector or a matrix, a tensor
cijk� is a multidimensional array of real numbers, one for each choice of i, j, k, and �
ranging from one to three.

(a) How many different real numbers are needed to specify a general four-index tensor?

In this problem, we introduce two particularly useful and important tensors. One is the
Kronecker delta function δij , which is one if i = j and zero if i �= j.

δij = 1 if i = j δij = 0 if i �= j (7.3.1)

The other is the Levi-Civita symbol, or totally antisymmetric tensor, εijk. It is defined by
its value for i = 1, j = 2, k = 3,

ε123 = 1 (7.3.2)

and its antisymmetry property: it changes sign whenever two indices are permuted:

εijk = −εjik = −εikj = −εkji. (7.3.3)

It’s easy to see that εijk gives +1 if {ijk} is an even permutation of {123}, −1 if it is an
odd permutation, and zero if any two indices agree.

(b) Using equations (7.3.2) and (7.3.3), show that (specifically) ε223 = 0; show also that
ε123 = ε231 = ε312 = 1 and ε321 = ε213 = ε132 = −1.

(c) Write out δij as a matrix, with i labeling the row and j the column. What do you
usually call this matrix? Write out εijk as three matrices ε1jk, ε2jk, and ε3jk, with i

∗ Huygens simulates a source which is a thin slit, rather than a point source, so the
decay of amplitude with distance is different than the one for the analytical portion of this
problem.
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labeling the matrix, j the row and k the column. (We do not usually write out tensors
in this way.)

One of the most common things we do to tensors is taking outer products and/or contracting
them. The outer product of two tensors aij and bk�, for example, is a tensor with four
indices given by the product of the two: dijk� = aijbk�. Contraction is done by setting two
indices of a tensor (or an outer product of tensors) equal, and summing over all values of
that repeated index: the new tensor has two fewer indices after contraction.

A familiar examples of a contraction is taking the trace of a matrix: tr(M) =
∑3

i=1 Mii.
Three familiar examples of taking outer products and then contracting are the dot product
of two vectors, v ·w =

∑3
i=1 viwj , applying matrices to vectors (Mv)i =

∑3
j=1 Mijvj , and

multiplying matrices (MN)ik =
∑3

j=1 MijNjk.

You notice that there are a lot of sums
∑3

j=1 in the formulas above. In physics, we often
make use of the Einstein convention, where summation (contraction) over repeated
indices is implied. Hence if we write aiij , the convention implies that we really meant the
one-index tensor resulting from summing over i,

∑3
i=1 aiij .

(d) Write the trace, dot product, matrix operating on a vector, and matrix multiplication
examples above using the Einstein convention.

(e) Give arguments for the following formulas involving δij and εijk. We use the Einstein
convention.

δii = 3

(Easy.)

εijkδjk = 0

(Consider two kinds of terms: j = k and j �= k.)

εijkεijk = 6

(Show that this is the sum of the squares of all of the elements of the tensor.
How many non-zero elements are there?)

εijkεij� = 2δk�

(Show that the left–hand–side is zero if k �= �.
Then compute it for k = � = 3, and argue from there.)

εijmεk�m = δikδj� − δi�δjk

(Show the left–hand–side is zero except in the two cases
(i = k and j = �) and (i = � and j = k).
Then find the sign for the two cases.)
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(f) Write the cross product of two vectors v and w as the outer product contracted twice
with the totally antisymmetric tensor. Given a matrix Mij, show the determinant of M
is antisymmetric under interchange of any two rows or columns, and the determinant
of the identity matrix is one: these two properties uniquely specify the determinant.
Hence show that we may write the determinant of M as

det M = (1/6) εijkε�mnMi�MjmMkn.

(7.4) Complex Ginzburg-Landau Equations.

The complex Ginzburg-Landau equation gives the two-dimensional equation of motion for
a complex field in the plane A(x, y, t) = (a(x, y, t) + ib(x, y, t)) :

∂A/∂t = A − (1 + ic)|A|2A + (1 + ib)∂2A/∂x2 + (1 + ib)∂2A/∂y2.

(a) Dropping the nonlinear term. Assume at t = 0 that the amplitude A is small in
absolute value. Which term can we ignore?

(a) Linear instability analysis. Find a standing-wave solution to the linearized wave
equation given by part (a), using Fourier methods (that is, assume a solution of the
form A(x, y, t) = Ak(t) exp(i(kxx + kyy)) and solve for Ak(t)). You should get a
solution of the form

A(x, y, t) = A0 exp (t/τ(k)) exp (i(k · x− ωt)) .

(b) Ignoring exp(t/τ(k)) for the moment, what is the dispersion relation ωk? What is the
phase velocity and group velocity, as a function of k?

(c) For what values of k is τ(k) < 0, so the waves die out as time progresses? Are these
long-wavelengths or short? For what values of k is the assumption of small amplitudes
unstable in time, because even small initial perturbations will grow?
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 8, due Monday Oct. 28
Latest revision: October 25, 2002, 12:55

Reading

Elmore & Heald, sections 3.1-3.3, 7.4

Feynman, section I.30 (Diffraction), II.30 (Crystals), II.31 (Tensors), II.38-1/2 (Elasticity)

Prelim II

Prelim II is tentatively scheduled for Wednesday November 6, pending discussion about
timing with the class. Prelim II will cover the higher-dimensional wave equations, interfer-
ence and diffraction, tensors, elasticity theory, elastic waves, and electromagnetic waves.
It will potentially include questions from the experimental lab Microwaves and Optics. It
will be a similar format to the last exam.

Problems

(8.1) Diffraction Grating. A 10 cm wide diffraction grating with 10000 slits is used to
measure the wavelengths emitted by hot hydrogen gas. (a) At what angles θ in the first
order spectrum do we expect to find the two violet lines of wavelengths 434 and 410nm?
(b) Same question but for second order.

(8.2) Thick Slits and Windows. Start up Huygens. Set the “Number of Slits” to one
and the width a of the slit to 5 m. Notice the single-slit diffraction pattern on the right.
Notice that the waves on the left look much like you’d expect for light coming in a window:
light traveling along straight lines. How do we reconcile these two pictures?
Bring the screen in closer: try “X Screen” at 10 and 1 meter. (If you get too close, you’ll
begin to see my numerical method for generating the slit.) Now vary the wavelength. How
much farther does the intensity look “window-like” at λ = 0.35 than for λ = 0.7? Finally,
vary the slit width a. With λ = 0.7, what distance to the screen for a = 2.5 looks the
same shape as 10m for a = 5?
Explain why you can hear around corners, but you can’t see around corners.

(8.3) Double Thick Slit. Start up Huygens. Set d to 8m, and a to 2m. You should see
a complicated interference pattern. Now set the number of slits to one. Is the single slit
pattern the envelope of the double thick-slit pattern? Set the number of slits back to two,
and set a to zero. Is the thin-slit pattern like the carrier wave?
Show that the intensity for a double-slit with distance d between the centers and width a
for each slit is the product of the single-slit diffraction pattern of width a and the double
thin-slit diffraction pattern. (You can either do this by brute force, or by using properties
of Fourier transforms we derived in the computer lab.)
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(8.4) Interference A coherent laser beam impinges on a slit of width a. An intensity
pattern is viewed on a distant screen: the center has intensity I0 and the peak width
(distance between the nearest minima) is ∆Y . The slit is broadened to 2a. What is the
new intensity Idoubled and peak minimum separation ∆Y ′? You may assume that the
angles are small, so sin θ ≈ θ.

(A) I ′ = 4I0, ∆Y ′ = ∆Y/2.
(B) I ′ = 2I0, ∆Y ′ = ∆Y/2.
(C) I ′ = 2I0, ∆Y ′ = ∆Y/4.
(D) I ′ = 4I0, ∆Y ′ = 2∆Y.
(E) I ′ = 2I0, ∆Y ′ = 2∆Y.

(8.5) Traction-free boundary condition.

z

y

x
B

D

E

F

A C

An isotropic elastic medium is strained as shown on the left above: it is compressed and
stretched along different axes. The stress tensor is

σij =




a −a 0
−a a 0

0 0 −2a


 .

The medium has a flat free surface perpendicular to the axis n̂. (A free surface is a surface
on which there is no traction, or forces, applied.) Knowing the stress tensor above, in which
direction n̂ could the surface normal point? The surfaces are illustrated in the figure on
the right.

(A) n̂ = (1, 0, 0)
(B) n̂ = (0, 1, 0)
(C) n̂ = (0, 0, 1)
(D) n̂ = (1/

√
2, 1/

√
2, 0)

(E) n̂ = (1/
√

2,−1/
√

2, 0)
(F) n̂ = (1/

√
2, 1/

√
2, 1/

√
2)

Related formulæ: Fi/A = σijn̂j , Fi = ∂jσij , σij = cijklεkl = 2µεij + λεkkδij
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(8.6) The Power of Tensors. Remember from last week the definitions of the two most
important tensors: the Kronecker delta function δij = 1 if i = j, δij = 0 if i �= j, and
the totally antisymmetric tensor εijk = −εjik = −εikj = −εkji with ε123 = 1. Remember
the identities that you proved: δii = 3, εijkδjk = 0, εijkεijk = 6, εijkεij� = 2δk�, and
εijmεk�m = δikδj� − δi�δjk. Notice that one can conveniently use tensor notation to write
the gradient (∇ψ)i = ∂iψ, divergence ∇ · a = ∂iai, and curl (∇× a)i = εijk∂jak.

Use these formulas to prove the following vector identities (listed in the front of Jackson,
Classical Electrodynamics):

a · (b× c) = b · (c × a) = c · (a × b)

a × (b× c) = (a · c)b− (a · b)c

(a× b) · (c × d) = (a · c)(b · d) − (a · d)(b · c)

∇×∇ψ = 0

∇ · (∇× a) = 0

∇× (∇× a) = ∇(∇ · a) −∇2a

∇ · (ψa) = a · ∇ψ + ψ∇ · a
∇× (ψa) = ∇ψ × a + ψ∇× a

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b × (∇× a)

∇ · (a × b) = b · (∇× a) − a · (∇× b)

∇× (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 9, due Monday Nov. 4
Latest revision: October 25, 2002, 12:55

Reading
Browse Elmore & Heald, sections 7.4, 7.5, 7.6, 8.1-8.5; don’t worry about the obsolete
notation of dyadics and stuff.
Feynman II.39.1/5 (Strain and Elasticity), I.51.3/4 (Waves in Solids and Surface Waves),
II.39-3/4 (Elastic Motion), II.19 (The Principle of Least Action: not for credit), II.20
(Solutions of Maxwell’s Equations in Free Space), and II.32 (Refractive Index of Dense
Materials).

Experimental Lab III
Interference and Diffraction, Monday evening 11/4 and Thursday afternoon 11/7, Rock
B26 and B30.

Problems
Elmore & Heald, page 229, 7.5.2 (solenoidal and irrotational breakup). Write things out
in our modern tensor notation.
Elmore & Heald, page 251, problem 8.2.2 (electromagnetic waves in matter: you may
find Feynman’s section II.32-3 useful) and page 253, problem 8.2.6 (local conservation of
charge: continuity equation).

(9.1) Strain fields at large rotations. Show for a rotation about the z axis by an angle
θ that the gradient of the displacement field ∂iuj is

�∇�u =


 cos(θ) − 1 sin(θ) 0

− sin(θ) cos(θ) − 1 0
0 0 0


 .

Calculate the strain field εapprox
ij = (1/2)(∂iuj + ∂jui) and show that it is not small. How

large a rotation would give a 1% strain field (and hence lead to plastic deformation)? Now
calculate the true strain matrix including the “geometric nonlinearity” εij = (1/2)(∂iuj +
∂jui + ∂iuk∂juk) and show that it is zero.

(9.2) Elastic Moduli. In an isotropic material, only two elastic moduli are independent:
all others can be written in terms of them. The tensor form for the elastic energy of a
material is most nicely written in terms of the two Lamé elastic constants λ and µ. The
constant µ is just the shear modulus (Feynman eqn. II.38.14); the constant λ = B − 2µ/3,
where B is the bulk modulus (Feynman’s K, eqn. II.38.9).

(a) Solve for the bulk modulus B, the Poisson ratio ν,∗ and the Young’s modulus Y in
terms of λ and µ. (Use the equations mentioned above.) Also solve for the constrained
Young’s modulus for pure linear strain YB (Feynman’s 38.20) in terms of λ and µ.

∗ We use ν for Poisson’s ratio, as the engineers do, reserving σ for the stress tensor.
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(b) The pure linear strain has only one non-zero component (Feynman’s figure II.38.8):
the strain tensor εxx = ∆x/x, with all other components zero. Knowing that σxx =
YB∆x/x, use the tensor relation of stress to strain (Feynman’s eqn. II.39.12) and the
elastic tensor components for an isotropic material (Feynman’s eqn. 39.21) to re-derive
your formula for YB from part (a).

(c) Show that bulk compression has three non-zero components: εxx = εyy = εzz =
∆V/(3V ) by computing the change in volume of a L×L×L cube under that uniform
strain field. Knowing that the stress σxx = B∆V/V , check your formula for the bulk
modulus in part (a).

(d) Under unconstrained linear extension the material compresses in the y and z directions
by Poisson’s ratio times the extension along the x direction: if εxx = ∆L/L then
εyy = εzz = −ν∆L/L. Use this strain to check your formula for Young’s modulus in
part (a). (You may use your formula for Poisson’s ratio.)

(9.3) Elastic Waves.

A small crack starts on the inside of a concrete dam, gener-
ating acoustic waves of all polarizations with wavelengths
much shorter than the thickness D of the dam. An acous-
tical detector is positioned outside the dam directly oppo-
site to the crack. The concrete can be assumed to be an
isotropic medium with positive elastic constants λ and µ.
What signal is expected in the acoustical detector?

(A) A transverse sound pulse, followed by a longitudinal sound pulse.

(B) A longitudinal sound pulse, followed by a transverse sound pulse.

(C) A transverse sound pulse only: sound is a transverse wave.

(D) A longitudinal sound pulse only: the transverse sound component will travel along
the length and width of the dam, not across the thickness.

(E) A sound pulse after a time t = D/
√

Y/ρ, where Y is the Young’s modulus of concrete.

Related formulæ: ρ∂2ui/∂t2 = (λ + µ)∂i∂juj + µ∂j∂jui. With ∇ · uT = 0, cT =
√

µ/ρ;
with ∇× uL = 0, cL =

√
(λ + 2µ)/ρ
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(9.4) Tensor Notation Review. Suppose B = ∇×A. Which of the following are correct
formulas for B2? (For example, the energy contained in a magnetic field is B2/8π.)

(A) εijk∂jAkεi�m∂�Am.
(B) (δj�δkm − δjmδk�)(∂jAk)(∂�Am).
(C) (∂jAk)2 − (∂jAk∂kAj).
(D) All of the above.
(E) None of the above.

(9.5) Elastic Traveling Wave. An isotropic elastic medium with density ρ and moduli λ
and µ fills the half space x > 0. The boundary of this medium is wiggled with displacement
field

u(0, y, z) = (f(t), g(t), h(t)) ,

generating an elastic wave travelling to the right (positive x direction).
What is the displacement u(x, y, z, t) for x > 0?

(A) u(x, y, z, t) = (0, g(t− x/c), h(g − x/c)).
(B) u(x, y, z, t) = (f(t − x/

√
(λ + 2µ)/ρ), g(t− x/

√
µ/ρ), h(t − x/

√
µ/ρ)).

(C) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− x/
√

(λ + 2µ)/ρ), h(t − x/
√

(λ + 2µ)/ρ)).

(D) u(x, y, z, t) = (f(x − √
µ/ρ t), g(x− √

(λ + 2µ)/ρ t), h(x − √
(λ + 2µ)/ρ t)).

(E) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− y/
√

(λ + 2µ)/ρ), h(t − z/
√

(λ + 2µ)/ρ)).

(9.6) Waves on a Thin Wire. A plane wave of wave vector k passes along the x̂ direction
through a thin wire of radius W . The wire width W is thin compared to the wavelength,
so kW << 1. The material making up the wire is isotropic, with elastic moduli λ and µ.
The wave at t = 0 is approximately given by the real part of

u = Aei(kx−ωt)

(
1 − ν

k2(y2 + z2)
2

,−ikyν,−ikzν

)

where we use the engineering notation ν for Poisson’s ratio ν = λ/2(µ+λ).∗ This formula
is correct up to terms of order k3W 3.

(a) The wave is primarily longitudinal, for small k (the y and z components of u are
smaller by a factor of kW than the x component). The wave is basically stretching
and compressing the wire along the x̂ direction, with a small correction. Ignoring
for the moment the term proportional to k2, show that the y and z components are
just what one would expect from Poisson’s ratio applied to the amount the wire is
stretched along the x direction.

The k2 term took me a long time to figure out the first year I taught this. I don’t have a
simple explanation for it, but without keeping it you get the wrong sound velocity even as
k → 0.

∗ Feynman and E&H use σ for Poisson’s ratio, which we use for the stress tensor.
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(a) Compute the strain tensor ε(x, y, z, t) for this displacement field, ignoring the geomet-
ric nonlinearity. Write it out as a 3×3 matrix.

(b) The wire is isotropic, with elastic moduli λ and µ. Write the stress tensor for the wire
as a 3×3 matrix.

(c) (Not for credit: gluttons for punishment only.) Check that this displacement field
satisfies Newton’s law

ρ∂2ui/∂t2 = ∂jσij

and has zero stress at the surface of the wire up to terms of order k3, with ω = ck
and c =

√
Y/ρ.

Thus longitudinal sound down a thin wire travels with a speed of sound set by Young’s
modulus.
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 10, due Monday Nov. 18
Latest revision: November 10, 2002, 4:44

Reading

Feynman, I.1 Atoms in Motion, I.6 Probability, & I.43 Diffusion
Schroeder, chapter 1. Browse section 6.4 (Maxwell distribution of velocities).

Problems

Schroeder,
(1.12) How Dilute is Air? Assume small molecules are around 0.4 nm in diameter.
(1.18) Molecular Velocities.
(1.33) P-V diagram. (Hint: can you write the energy content U of the gas in terms of

P and V ?) If the heat flow on leg C goes to a different reservoir than that for
legs A and B, what common kitchen appliance could this diagram represent?

(1.60) Frying Pan. Do this three ways. (a) Guess the answer from your own experience.
If you’ve always used aluminum pans, consult a friend. (b) Use an argument
analogous to Schroeder’s equation (1.71). (c) Roughly model the problem as
the time needed for a pulse of heat at x = 0 on an infinite rod to spread out a
distance equal to the length of the handle, and use the Greens function for the
heat diffusion equation (problems 10.3 and 10.4 below).

(10.1) Random walks in Grade Space. Let’s make a simple model of the prelim grade
distribution. Let’s imagine a multiple-choice test of ten problems of ten points each. Each
problem is identically difficult, and the mean is 70. How much of the point spread on
the exam is just luck, and how much reflects the differences in skill and knowledge of the
people taking the exam? To test this, let’s imagine that all students are identical, and that
each question is answered at random with a probability 0.7 of getting it right. What is the
expected mean and standard deviation for the exam? (Work it out for one question, and
then use our theorems for a random walk with ten steps.) A typical exam with a mean
of 70 might have a standard deviation of about 15. What physical interpretation do you
make of the ratio of the random standard deviation and the observed one?

(10.2) Probability Distributions. I’m assuming you’re familiar with probabilities for
discrete events (like coin flips and card games), but you probably haven’t worked much
with probability distributions for continuous variables (like human heights and atomic
velocities). The three probability distributions most commonly encountered in physics
are: (i) Uniform: ρuniform(x) = 1 for 0 ≤ x < 1, ρ(x) = 0 otherwise; produced by random
number generators on computers. (ii) Exponential: ρexponential(t) = e−t/τ/τ for t ≥ 0,
familiar from radioactive decay and used in the collision theory of gases. (iii) Gaussian:
ρgaussian(v) = e−v2/2σ2

/(
√
2πσ), describing the probability distribution of velocities in a

gas, the distribution of positions at long times in random walks, the sums of random
variables, and the solution to the diffusion equation.
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(a) Likelihoods. What is the probability that a random number uniform on [0, 1) will
happen to lie between x = 0.7 and x = 0.75? That the waiting time for a radioactive
decay of a nucleus will be more than twice the exponential decay time τ? That your
score on an exam with Gaussian distribution of scores will be greater than 2σ above
the mean?∗

(b) Normalization, Mean, and Standard Deviation. Show that these probability
distributions are normalized:

∫
ρ(x)dx = 1. What is the mean x0 of each distribu-

tion? The standard deviation
√∫

(x− x0)2ρ(x)dx?∗ Is the standard deviation for the
Gaussian distribution σ?

(c) Sums of variables. Draw a graph of the probability distribution of the sum x+y of
two random variables drawn from a uniform distribution on [0, 1). Argue in general
that the sum z = x + y of random variables with distributions ρ1(x) and ρ2(y) will
have a distribution given by the convolution ρ(z) =

∫
ρ1(x)ρ2(z − x) dx.

(d) Multidimensional probability distributions. In statistical mechanics, we of-
ten discuss probability distributions for many variables at once (for example, all the
components of all the velocities of all the atoms in a box). Let’s consider just the
probability distribution of one molecule’s velocities. If vx, vy, and vz of a molecule are
all distributed with a Gaussian distribution with σ =

√
kT/M (Feynman’s equation

40.9, next week), then we describe the combined probability distribution as a function
of three variables as the product of the three Gaussians:

ρ(vx, vy, vz) =1/(2π(kT/M))3/2 exp(−mv2/2kT )

=

(√
M

2πkT
e

−Mv2
x

2kT

)(√
M

2πkT
e

−Mv2
y

2kT

)(√
M

2πkT
e

−Mv2
z

2kT

)
.

Show, using your answer for the standard deviation of the Gaussian in part (b), that
the mean kinetic energy is kT/2 per dimension. Show that the probability that the
speed is v = |v| is given by a Maxwellian distribution

ρMaxwell(v) =
√
2/π(v2/σ3) exp(−v2/2σ2).

(e) Assuming the probability distribution for the z component of velocity given in part (d),

ρ(vz) =
(√

M
2πkT

e
−Mv2

z
2kT

)
, give the probability that an N2 molecule will have a verti-

cal component of the velocity greater than the escape velocity from the Earth (about
10 km/sec, if I remember right). Do we need to worry about losing our atmosphere?
(Hint: this is closely related to Schroeder’s problem 1.18.) If you try the same calcu-
lation for H2, you’ll find a substantial leakage: that’s why Jupiter looks so different
from the Earth.

∗ For the Gaussian distribution, you can use a table of integrals and special functions,
or a symbolic manipulation package like Mathematica or Matlab.
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(10.3) Thermal Diffusion. The rate of energy flow in a material with thermal conduc-
tivity kt and a temperature field T (x, y, z, t) = T (r, t) is J = −kt∇T (see Feynman eq.
43.41). Energy is locally conserved, so the energy density E satisfies ∂E/∂t = −∇ · J.
(a) If the material has constant specific heat cp and density ρ, so E = cpρT , show that

the temperature T satisfies the diffusion equation ∂T/∂t = kt

cpρ∇2T . (See Schroeder,
problem 1.62).

(b) By putting our material in a cavity with microwave standing waves, we heat it with
a periodic modulation T = sin(kx) at t = 0, at which time the microwaves are turned
off. Show that amplitude of the temperature modulation decays exponentially in time.
How does the amplitude decay rate depend on wavelength λ = 2π/k?

(10.4) Heat Diffusion Spot. The diffusion equation for the heat density in a two-
dimensional sheet is

∂q/∂t = K(∂2q/∂x2 + ∂2q/∂y2).

(a) Diffusion in Two Dimensions. Show that if f(x, t) satisfies the diffusion equation
in one dimension, then f(x, t)f(y, t) solves the diffusion equation in two dimensions.
(Related formulæ: Product Rule, ∂fg/∂z = ∂f/∂z g + f ∂g/∂z.)

(b) The heat spot. A screen of thermal diffusion constant K is heated at x = y = 0 and
t = 0 by a thin laser beam pulse. The total heat deposited is Q. Use part (A) and the
Greens function for the one dimensional diffusion equation to derive the equation for
q(x, y, t), the heat density after a time t. What is the root-mean-square radius r(t) =√〈x2 + y2〉 for this spot? (Related formulæ: ∂ρ/∂t = D∂2ρ/∂x2; If ρ(x, 0) = δ(x),
ρ(x, t) = G(x, t) = 1√

4πDt
e−x2/4Dt and 〈x2〉 = 2Dt; 〈f(z)〉 = ∫ f(z)ρ(z) dDz.)
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Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 11, due Monday Nov. 25
Latest revision: November 26, 2002, 10:34 am

Reading

Feynman, I.39 The Kinetic Theory of Gases, I.40 Principles of Statistical Mechanics, I.41
The Brownian Movement, & I.42 Applications of Kinetic Theory.

Schroeder, “Very Large Numbers” subsection of section 2.4, 2.5 (Ideal Gas) & 3.1 (Tem-
perature).

Web reading

Introduction to the Cosmic Microwave Background Radiation:
http://background.uchicago.edu/∼whu/beginners/introduction.html
http://background.uchicago.edu/∼whu/intermediate/intermediate.html,
especially the parts Acoustic Oscillations, Angular Peaks, and First Peak.

Problems

Schroeder,
(3.2) Zeroth law.
(3.3) Entropy graphs.

(11.1) Entropy and Hard Spheres.

r

We can improve on the realism of the ideal gas by giving the atoms a small radius. If
we make the potential energy infinite inside this radius (“hard spheres”), the potential
energy is simple (zero unless the spheres overlap, which is forbidden). Let’s do this in two
dimensions.

A two dimensional L × L box contains an ideal gas of N hard disks of radius r � L (left
figure). The disks are dilute: the summed area Nπr2 � L2. Since the disks cannot be
within r of the edges of the box, let A be the effective volume allowed for the first disk in
the box: A = (L − 2r)2.

1



(a) Configuration Space Volume for Hard Disks. The area allowed for the second
disk is A−π(2r)2 (right figure), ignoring the small correction when the excluded region
around the first disk overlaps the excluded region near the walls of the box. The area
allowed for the nth disk is A−(n−1)π(2r)2, ignoring corrections for the overlaps of the
excluded regions. Let configuration space X be the 2N dimensional space of positions
x(1), x(2), . . .x(N). Write an expression for the volume ΩX of allowed zero-energy
configurations of hard disks, in the configuration space X, ignoring the overlapping
excluded regions. (Related formulæ: For a 3D ideal gas, ΩP = (π′s)(2mE)(3N−1)/2,
ΩX = V N . Remember the 1/N ! correction for indistinguishable particles!)

(b) Statistical Mechanical Entropy for Hard Disks. It’s now easy to write the
configurational entropy, SX for the hard disks of part (a) as a sum over n. Use
the “Math truth” below to find a formula for the entropy that does not involve a
sum over n, accurate to first order in the area of the disks πr2. (Related formulæ:
S = kB ln(Ω); Simpson’s Rule: n! ≈ (n/e)n

√
2πn; Math Truth: To first order in

ε,
∑N

n=1 log (A − (n − 1)ε) = N log (A − (N − 1)ε/2).)

(c) Pressure for Hard Disks. Assume the hard-disk configurational entropy is SX =
NkB log(A − Nb) for some area b, representing the effective excluded area due to
the other disks. (Your answer to (b) won’t quite have this form, but it’s a good
approximation, up to an overall N -dependent constant.) Just as for the ideal gas,
the internal energy U is purely kinetic, and the kinetic energy and momentum-space
entropy depend only on temperature and not on volume. So, if we isothermally expand
this hard-disk gas from initial area A1 to A2, the internal energy doesn’t change:
∆U = Q + W = 0, so the heat Q added to the gas equals −W , the work done by
the gas expanding against the external pressure P . By differentiating with respect to
A2, find the pressure for the hard-sphere gas. (Hint: for b = 0 it should reduce to the
ideal gas law.) (Related formulæ: W = − ∫ A2

A1
PdA and ∆S = Q/T (Thermodynamic

Entropy). For a 3D ideal gas, PV = NkBT and U = 3/2 NkBT.)

(11.2) Waves and the Birth of the Universe. (Large thanks to Ira Wasserman: errors
are of course my own.)
Our universe started very hot and dense, in what we call the Big Bang. This auspicious
starting point is what sets our arrow of time.

Because the universe is expanding, the light emitted back then has redshifted (due to the
Doppler effect), so the immensely hot and bright origin of the universe now resides in a
microwave background radiation that you’d get from a black body at a temperature of 3
K. We’ve learned a lot about our universe recently by carefully measuring the differences
between the temperatures of this radiation as we look in different directions in the night
sky.

Figure (11.2.1) shows these tiny fluctuations in temperature.∗ The fluctuations in temper-
ature represent noisy thermal waves in the early universe.

∗ Actually, it shows these fluctuations after a dipole term has been subtracted out.
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(11.2.1) Microwave background radiation map. Variation in temperature of the mi-
crowave background radiation, after the constant term and the dipole term are subtracted
out, from COBE, the Cosmic Microwave Background Explorer. The fluctuations are about
one part in 100,000. The bright stripe at the equator is our galaxy.

Because it was still very hot, all the hydrogen in the universe was still ionized. Light doesn’t
travel very far in ionized gases (it accellerates the charges and scatters from them): the
light and matter remained in equilibrium with one another until the universe was around
300,000 years old, when it got cold enough for the electrons and protons to combine into
hydrogen.

Before 300,000 years, the combined light-and-matter density satisfied a wave equation:

(1 + R)∂2Θ/∂t2 = (c2/3)∇2Θ, (1)

where c is the speed of light in vacuum, Θ is the temperature fluctuation ∆T/T , t is
“conformal” time (treat it as regular time), and R is the contribution of matter to the
density. Θ can be viewed also as the energy density fluctuations ∆e/e where e = U/V is
the energy density: denser regions are hotter. After recombination, the light was able to
travel directly (albeit red-shifted) to our cameras. So, the microwave background radiation
is giving us a snapshot of the temperature fluctuations of the universe at age 300,000 years.

(a) What is the speed of sound in this gas?

Let’s derive equation (1).

(b) The dominant contribution to the pressure of this combined light-and-matter mixture
is due to the light pressure. Feynman (section 39.3) shows that the photon gases
satisfy PV 4/3 = C, where C is some constant. (Photons are quantized light particles:
you’ll learn about them more in Modern Physics.) The bulk modulus B is defined by

The dipole comes from the Doppler effect of our motion. Einstein’s theory states that all
motion is relative: the laws of physics don’t depend upon how fast the Sun is moving with
respect to the distant galaxies. But that doesn’t mean that the distant galaxies (or, even
better, the glow from the Big Bang) doesn’t have a particular velocity! We can measure
our velocity with respect to the universe by using this dipole.
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(11.2.2) Wave vector dependence of microwave radiation pattern. Variation in
temperature of the microwave background radiation, decomposed into spherical harmonics.
Spherical harmonics are like a Fourier transform, but for angles: you can think of � for the
multipole as roughly corresponding to wavenumber k of the corresponding temperature
fluctuation in the universe when it became transparent to photons (at recombination)
(From Wayne Hu’s Web site, above).

∆P = −B∆V/V . Show that the bulk modulus is 4P/3. Feynman also shows that
PV = U/3. Let P0 be the average light pressure, U0 be the average energy in the
light in an initial volume V0. Show (trivially) that B = (4/9)U0/V0 where U0/V0 is
the average photon energy density.

(c) The total mass density for the wave equation ρ in the early universe has three im-
portant contributions. First, there is the regular mass of particles (mostly baryons)
Mbaryon/V0. Then there is the energy density of the photons divided by c2 (remember
E = mc2?), U0/(V0c

2). Finally, there is a contribution due to the pressure P0/c2

(this is really a component of a stress-energy tensor...) Show that the total density is
ρ = Mbaryon/V0 + 4U0/(3V0c

2).

(d) Derive equation (1) above from ρ∂2P/∂t2 = B∇2P. What is the formula for R?

A theory called “inflation” predicts that at very early times the universe was left in a state
which we can think of as being uniform in temperature and density, but with a random
velocity field. Let’s derive what the density field Θ(x) should look like at time t = 300, 000
years.

(e) Consider first an initial standing-wave perturbation Θ(x, t) = Θ̃k sin(k · x) sin(ωkt).
(Of course the universe started with a superposition of many such standing waves
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with different k.) What is ωk? The density fluctuation is zero at t = 0, as inflation
predicts. At what times will this wave have maximum density fluctuations? Which
values of k = |k| will have maximum amplitudes at t = 300, 000 years? Show that odd
multiples of the first peak are maxima, while even multiples are minima. Assuming
for simplicity that R = 0 (photon-dominated mass density), give the wavelength of
the first peak, in light years.

Our picture of the background radiation (first above) is a cross section of the original
radiation at a sphere given by the 10 billion years since recombination (modulo corrections
due to the age of the universe). Since the data is on a sphere, they need to decompose
our data into spherical harmonics: the constant � in the wave-vector figure (II.2.2) roughly
corresponds to wave number k.

(f) Is twice the � value of the first maximum in figure (11.2.2) a maximum or a minimum?
Does that agree with your conclusion for part (e)? What about three times the first
maximum? (The full theory includes other effects which shift the peak positions.)

5



Physics 218: Waves and Thermodynamics
Fall 2002, James P. Sethna

Homework 12, due Wednesday Dec. 4
Latest revision: November 26, 2002, 10:45 am

Reading

Feynman, I.44 Laws of Thermodynamics, I.45 Illustrations of Thermodynamics, & I.46
Ratchet and Pawl

Schroeder, 2.6 (Entropy), 3.1 (Temperature), & 4.1 (Heat Engines. Browse the rest of
chapter 4 (Engines and Refrigerators).

For further reading (much more advanced)

Freeman J. Dyson, “Time without end: Physics and biology in an open universe”, Reviews
of Modern Physics 51, 447 (1979).

Problems

Schroeder,
(3.10) Entropy and Ice Cubes. The latent heat of ice is 80 cal/g, and the specific heat

of water is cp = 1cal/(gm · K); one calorie is 4.186 J.
(3.16) Entropy and bits.

(12.1) Life and the Heat Death of the Universe.

Freeman Dyson discusses how living things might evolve to cope with the cooling and
dimming we expect during the heat death of the universe.

Dyson models an intelligent being as a heat engine that consumes a fixed entropy ∆S
per thought. (This correspondence of information with entropy is a standard idea from
computer science.)

(a) Energy needed per thought. Assume that the being draws heat Q from a hot
reservoir at T1 and radiates it away to a cold reservoir at T2. What is the minimum
energy Q needed per thought, in terms of ∆S and T2? You may take T1 very large.
(Related formulæ: For Carnot engine, ∆S = Q2/T2−Q1/T1 = 0; First Law: Q1−Q2 =
W (energy is conserved).)

(b) Time needed per thought to radiate energy. Dyson shows, using theory not
important here, that the power radiated by our intelligent–being–as–heat–engine is
no larger than CT 3

2 , a constant times the cube of the cold temperature.∗ Write an
expression for the maximum rate of thoughts per unit time dH/dt (the inverse of the
time ∆t per thought), in terms of ∆S, C, and T2.

∗ The constant scales with the number of electrons in the being, so we can think of our
answer ∆t as the time per thought per mole of electrons.
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(c) Number of thoughts for an ecologically efficient being. Our universe is ex-
panding: the radius R grows roughly linearly in time t. The microwave background
radiation has a characteristic temperature Θ(t) ∼ R−1 which is getting lower as the
universe expands: this red-shift is due to the Doppler effect. An ecologically efficient
being would naturally try to use as little heat as possible, and so wants to choose T2

as small as possible. It cannot radiate heat at a temperature below T2 = Θ(t) = A/t.
How many thoughts H can an ecologically efficient being have between now and time
infinity, in terms of ∆S, C, A, and the current time t0?

(d) Time without end: Greedy beings. Dyson would like his beings to be able to
think an infinite number of thoughts before the universe ends, but consume a finite
amount of energy. He proposes that his beings need to be profligate in order to get
their thoughts in before the world ends: he proposes that they radiate at a temperature
T2(t) ∼ t−3/8 which falls with time, but not as fast as Θ(t) ∼ t−1. Show that with
Dyson’s cooling schedule, the total number of thoughts H is infinite, but the total
energy consumed U is finite.

Figure (12.2.1) Cartoon of a motor protein, from Jülicher, Ajdari, and Prost, Rev. Mod.
Phys. 69, 1269 (1997). As it carries some cargo along the way (or builds an RNA or
protein, . . . ) it moves against an external force fext and consumes r ATP molecules, which
are hydrolized to ADP and phosphate (P).

(12.2) Ratchet and Molecular Motors.
Feynman’s ratchet and pawl discussion obviously isn’t so relevant to machines you can
make in your basement shop. The thermal fluctuations which turn the wheel to lift the
flea are too small to be noticable on human length and time scales (you need to look in
a microscope to see Brownian motion). On the other hand, his discussion turns out to be
surprisingly close to how real cells move things around. Physics professor Michelle Wang
studies these molecular motors in the basement of Clark Hall.

Inside your cells, there are several different molecular motors, which move and pull and
copy (figure 12.2.1). There are molecular motors which contract your muscles, there are
motors which copy your DNA into RNA and copy your RNA into protein, there are motors
which transport biomolecules around in the cell. All of these motors share some common
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Figure (12.2.2) Cartoon of Professor Wang’s early laser tweezer experiment, (Yin, Wang,
Svoboda, Landick, Block, and Gelles, Science 270, 1653 (1995)). (A) The laser beam is
focused at a point (the “laser trap”); the polystyrene bead is pulled (from dielectric effects)
into the intense part of the light beam. The “track” is a DNA molecule attached to the
bead, the motor is an RNA polymerase molecule, the “cargo” is the glass cover slip to
which the motor is attached. (B) As the motor (RNA polymerase) copies DNA onto RNA,
it pulls the DNA “track” toward itself, dragging the beam out of the trap, generating a
force resisting the motion. (C) A mechanical equivalent, showing the laser trap as a spring
and the DNA (which can stretch) as a second spring.

features: (1) they move along some linear track (microtubule, DNA, ...), hopping forward
in discrete jumps between low-energy positions, (2) they consume energy (burning ATP
or NTP) as they move, generating an effective force pushing them forward, and (3) their
mechanical properties have been studied by seeing how their motion changes as the external
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Figure (12.2.3) The effective potential for moving along the DNA (from Prost, above).
Ignoring the tilt We, Feynman’s energy barrier ε is the difference between the bottom
of the wells and the top of the barriers. The experiment changes the tilt by adding an
external force pulling � to the left. In the absence of the external force, We is the (Gibbs
free) energy released when one NTP is burned and one RNA nucleotide is attached.

force on them is changed (figure 12.2.2).

For transcription of DNA into RNA, the motor moves on average one base pair (ATG or
C) per step: ∆� is about 0.34nm. We can think of the triangular grooves in the ratchet
as being the low-energy states of the motor when it is resting between steps. The barrier
between steps has an asymmetric shape (figure 12.2.3), just like the energy stored in the
pawl is ramped going up and steep going down. Professor Wang showed (in a later paper)
that the motor stalls at an external force of about 27 pN (pico-Newton).

(a) At that force, what is the energy difference between neighboring wells due to the
external force from the bead? (This corresponds to Lθ in Feynman’s ratchet.) Let’s
assume that this force is what’s needed to balance the natural force downhill that
the motor develops to propel the transcription process. What does this imply about
the ratio of the forward rate to the backward rate, in the absence of the external
force from the laser tweezers, at a temperature of 300K, (from Feynman’s discussion
preceding equation 46.1)?

The natural force downhill is coming from the chemical reactions which accompany the
motor moving one base pair: the motor burns up an NTP molecule into a PPi molecule,
and attaches a nucleotide onto the RNA. The net energy from this reaction depends on
details, but varies between about 2 and 5 times 10−20 Joule. This is actually a Gibbs free
energy difference, but for this problem treat it as just an energy difference.

(b) The motor isn’t perfectly efficient: not all the chemical energy is available as motor
force. From your answer to part (a), give the efficiency of the motor as the ratio of
force-times-distance produced to energy consumed, for the range of consumed energies
given.
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(12.3) Carnot Refrigerator. Our refrigerator is about 2m × 1m × 1m, and has insu-
lation about 3cm thick. The insulation is probably polyurethane, which has a thermal
conductivity of about 0.02 W/mK. Assume that the refrigerator interior is at 270K, and
the room is at 300K.

(a) How many watts of energy leak from our refrigerator through this insulation?

Our refrigerator runs at 120 V, and draws a maximum of 4.75 amps. The compressor
motor turns on every once in a while for a few minutes.

(b) Suppose (i) we don’t open the refrigerator door, (ii) the thermal losses are dominated
by the leakage through the foam and not through the seals around the doors, and (iii)
the refrigerator runs as a perfectly efficient Carnot cycle. How much power on average
will our refrigerator need to operate? What fraction of the time will the motor run?

(12.4) Entropy of Glasses. Glasses aren’t really in equilibrium. In particular, they do
not obey the third law that the entropy S goes to zero as the temperature approaches
absolute zero. Experimentalists measure a “residual entropy” by subtracting the entropy
change from the known entropy Sequilibrium(T ) at high temperatures (say, in the ordinary
equilibrium liquid state):

Sresidual = Sequilibrium(T ) −
∫ T

0

dQ

T dT
dT.

Usually, one calls dQ/dT the specific heat C of the material, but we’re being fussy:

(a) If you put a glass in an insulated box, it will warm up (very slowly) because of
microscopic atomic rearrangements which lower the potential energy. So, glasses don’t
have a well-defined temperature or specific heat. In particular, the heat flow upon
cooling and on heating dQ

dT (T ) won’t precisely match (although their integrals will agree
by conservation of energy). By using the second law (entropy can only increase), show
that the residual entropy measured on cooling is always less than the residual entropy
measured on heating.∗

(b) The residual entropy of a glass is about kB per molecular unit. It’s a measure of how
many different glassy configurations of atoms the material can freeze into (section
I.46-4). In a molecular dynamics simulation with one hundred atoms, and assuming
that the residual entropy is kB log 2 per atom, what is the probability that two coolings
to zero energy will arrive at equivalent atomic configurations? In a system with 1023

molecular units, with residual entropy kB log 2 per unit, about how many coolings
would be needed to arrive at the same configuration twice?

∗ See Steve Langer’s paper, Phys. Rev. Lett. 61, 570 (1988), although M. Goldstein
noticed it earlier.
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