
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 1, due Monday Sept. 1
Latest revision: August 28, 2003, 8:46 pm

Reading

Elmore & Heald, section 1.1
Feynman, I.22-5/6

Problems

(1.1) Bead on a String.

x=0

Mass
  M

A bead of mass M is attached at x = 0 to a string of mass density λ0 stretched with
horizontal tension τ . The string extending to the left (negative x) has height η1(x, t), and
to the right it has height η2(x, t). The bead has height y(t) = η1(0, t) = η2(0, t). What is
the formula for the acceleration of the bead? (Draw the free body diagram!)

(A) d2y/dt2 = (τ/M)∂2η/∂x2

(B) d2y/dt2 = (τ/M)(η2(0, t) − η1(0, t))

(C) d2y/dt2 = (τ/M)(η1(0, t) − η2(0, t))

(D) d2y/dt2 = (τ/M)
(

∂η2

∂x
|x=0 −

∂η1

∂x
|x=0

)

(E) d2y/dt2 = (λ0/2τ)
(

∂2η1

∂x2 |x=0− + ∂2η2

∂x2 |x=0+

)

1



(1.2) Fourier Series. The laws for the motion of stretched strings, of the surface of
water, of sound, and of electromagnetic radiation are called wave equations because they
all have special solutions of the form of sinusoidal waves. That is, a string with initial
height A sin(kx) or B cos(kx) will time evolve in a particularly simple way. We need to
review some mathematics about sinusoidal waves.

(a) (Review) What is the wavelength of the shape A sin(kx), where x is the distance
measured along the string?

We call k the wave vector for the wave.

(b) (Review) Suppose we study a stretched string with the ends at x = 0 and x = L held
fixed at height y = 0. Calculate the values km at which η(x) = A sin(kx) satisfies
these two boundary conditions. (To be specific, let m − 1 be the number of zeros, or
nodes, for y(x) inside the string, not including the boundaries. For this problem, all
values of km should be positive.)

In this course, we will make extensive use of complex numbers. In quantum mechanics,
the waves really involve complex amplitudes, but for this course the complex numbers are
just a way to make the mathematics simpler: our waves will be the real parts of complex
waves. You should remember the formula

exp(ikx) = cos(kx) + i sin(kx). (1.2.1)

Thus cosine waves are the real part of the complex wave exp(ikx).

(c) (Review) If k is positive, for what smallest positive value of x0 is the real part of
exp(ik(x − x0)) a sine wave, sin(kx)?

The Fourier series for a function y(x) is an expansion in terms of sinusoidal waves. Elmore
and Heald concentrate on the Fourier sine and cosine expansions. In our work, we’ll
use complex Fourier series. Suppose we have a function y(x) defined on 0 ≤ x ≤ L,
with y(0) = y(L). (This is called periodic boundary conditions, since we can make y
into a periodic function by placing new copies side-by-side over each period L.) Various
mathematical theorems tell us that we can write y(x) as an infinite series

y(x) =
∞
∑

m=−∞

ỹm exp(ikmx). (1.2.2)

in terms of the complex sinusoidal waves exp(ikmx) which satisfy the same boundary
condition.

(d) Show that y(x) = exp(ikmx) satisfies y(0) = y(L) if km = 2πm/L (here km may be
positive or negative). Are these the same wave vectors as you found in part (b)?

The formula for the complex Fourier series coefficients ỹm of a function y(x) in an interval
of length L is

ỹm = (1/L)

∫ L

0

y(x) exp(−ikmx)dx. (1.2.3)
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Mathematical theorems tell us that the sum in equation (1.2.2) converges to y(x) if we use
the coefficients from equation (1.2.3). Also, the coefficients are unique: if the coefficients
aren’t all the same, the functions are different.

(e) Use equation (1.2.3) to compute the Fourier coefficients ỹm with m = −1, 0, and 1, for
sin(2πx/5), in an interval of length L = 5. Check this using the well-known formula
sin(θ) = (exp(iθ) − exp(−iθ)) /2i. Without using the formula (1.2.3), but using the
fact that the coefficients are unique, give all the Fourier coefficients for 7 cos(18πx/5),
again with L = 5. (Hint: what’s the well-known formula for cos(θ)?)

Decomposing a function into a Fourier series, equation (1.2.2), is like writing a vector as
a sum v = axx̂ + ayŷ + az ẑ. Instead of a three-dimensional space of vectors, we have an
infinite-dimensional space of functions. Our “unit vectors” are the complex exponential
waves exp(ikmx). Finding the coefficients, equation (1.2.3), is like taking the dot product
to find the coefficient in the expansion, ax = v · x̂, etc., except that the dot product of two
complex functions is generalized to an integral of one times the complex conjugate of the
other,

f · g = (1/L)

∫ L

0

f(x)g∗(x) dx. (1.2.4)

The dot products of different unit vectors x̂ · ẑ = 0: they are orthogonal to one another.
Also, the unit vectors are normalized, so x̂ · x̂ = 1.

(f) Show that our Fourier series functions exp(ikmx) with km = 2πm/L are normalized
under the dot product (1.2.4). Show that any two different Fourier series functions
m 6= n are orthogonal under the dot product (1.2.4).

(1.3) Fourier Series: Computer Lab.

Download the executables for Fourier from the bottom of the course home page. (The
Windows version works, as far as I know. The Linux version may not: let me know if you
have success or not, and which version of Linux you run.) When you start it up, you’ll find
at left a graph of the function y(x), and at right the Fourier series ỹ(km) for the function.
Thus to get m in ỹm, take the coordinate along the horizontal axis and multiply by L/2π.

Use Fourier to check your answers for problem 1.2(e). In particular, (i) set L = 5, (ii) find
m and x0 to plot y(x) = sin(2πx/5), and (iii) read off the Fourier coefficients from the right
graph. (You can zoom in with the mouse. Black is the real part, red the imaginary part.)
Do they agree with those you found in 1.2(e)? Then (iv) find m, x0, and the amplitude A
to generate 7 cos(18πx/5), (v) double the number of points N repeatedly until y(x) looks
like a smooth sine wave, and (vi) read off the Fourier transform. Does it agree?
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