
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 2, due Monday Sept. 8
Latest revision: September 10, 2003, 10:14 am

Reading

Elmore & Heald, sections 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
Feynman, sections I.22-5, I.22-6, I.23 Feynman, sections I.50-1/4

Problems

Elmore & Heald, page 7, problem 1.2.3 (stationary initial condition), and page 13, problem
1.3.2 (a).

Quick ones.

Elvis. Elvis notices that his A string on his guitar is off pitch: it is vibrating at 445 Hz.
He wants it to sound at 440 Hz.
(a) Is his guitar string sharp (too high pitch) or flat (too low)?
(b) Elvis twists the little knob at the top of the string to tune it to 440 Hz. Did he tighten

or loosen the tension?
(c) By what percentage does he change the tension?

Sympathetic Vibration. Consider two strings of equal mass density and length. When
the strings are near each other, starting string 1 vibrating in its fundamental mode causes
string 2 to vibrate in its third (n=3) natural mode. What is the ratio of the tension of
string 1 to string 2?

Numerical Derivatives. The angle θ(t) of a pendulum is measured at three different
times: θ(1.8) = 0.72, θ(2.0) = 0.74, and θ(2.2) = 0.82. Estimate the accelleration ∂2θ/∂t2

at t = 2.0.

Big ones.

(2.1) Solving the Wave Equation Numerically

Consider a string of length L that is shaken up and down at the left end η(0, t) = f(t) and
is fixed in position η(L, t) ≡ 0 at the right end.

∂2η

∂t2
= c2 ∂2η

∂x2
(1)

To solve this equation numerically, we must discretize the string into chunks of size δx in
space, and take small, discrete time steps δt in time.
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(a) Derive the approximate formula for the second derivative

∂2η

∂x2
≈

η(x + δx, t) − 2η(x, t) + η(x − δx, t)

δx2
(2)

from the approximate formula for the first derivative

∂η

∂x
(x0) ≈

η(x0 + ε/2) − η(x0 − ε/2)

ε
. (3)

(Hint: pick ε = δx and x0 = x ± δx/2. It may help to draw a picture of where you
are evaluating the first and second derivatives.)

(b) Applying this approximate formula to the wave equation (1), show that we can write
the future position of the string in terms of the past and present. If our wire is broken
up into N chunks of size δx = L/N ,

x0 ≡ 0, x1 = δx, . . . xN = Nδx ≡ L (4)

show that

η(xi, t + δt) ≈ 2η(xi, t) − η(xi, t − δt) + (c δt/δx)2 (η(xi+1, t) − 2η(xi, t) + η(xi−1, t)) .
(5)

Notice that this equation applies for i = 1, . . .N − 1, but not for i = 0 or i = N .
These boundary conditions have to be supplied separately: in our case, fixed on the
right, forced on the left.

(c) Write a program (using Matlab, Mathematica, a spreadsheet, or any other method
of your choice) to solve this wave equation with L = 15m, c = 2m/s, δx = 0.5m,
δt = 0.1s, and

f(t) = exp(−(6 − t)2/4). (6)

Use the evolution equation (5) and the initial conditions

η(xi, 0) ≡ η(xi,−δt) ≡ 0. (6)

When should the pulse center hit the right end of the string? Plot the pulse shape
when the center is partway to the wall, when your analysis says it should be hitting
the wall (notice the numerical error in our calculation), and after it is reflected. Where
do you think the energy is stored when the pulse is at the wall?
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(2.2) Fourier Series and Gibbs Phenomenon
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Figure 2.2.1 Step Function.

We defined complex Fourier series in the last problem set:

y(x) =

∞∑
m=−∞

ỹm exp(ikmx), (1.2.2)

ỹm = (1/L)

∫
L

0

y(x) exp(−ikmx)dx, (1.2.3)

with km = 2πm/L. In this problem set, we’ll look at the Fourier series for a couple of
simple functions, the step function (above) and the triangle function.

Consider a function y(x) which is A in the range 0 < x < L/2 and minus A in the range
L/2 < x < L (shown above). It’s a kind of step function, since it takes a step downward
at L/2.∗

(a) As a crude approximation, the step function looks a bit like a chunky version of a sine
wave, A sin(2πx/L). In this crude approximation, what would the complex Fourier
series be?

(b) Show that the odd coefficients for the complex Fourier series of the step function are
ỹm = −2Ai/(mπ) (m odd). What are the even ones? Check that the coefficients ỹm

with m = ±1 are close to those you guessed in part (a).

∗ It can be written in terms of the standard Heaviside step function Θ(x) = 0 for x < 0
and Θ(x) = 1 for x > 0, as y(x) = A (1 − 2Θ(x − L/2)).
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(c) Setting A = 2 and L = 10, plot the partial sum of the series equation (1.2.2) for
m = −n,−n + 1, . . . , n with n = 1, 3, and 5. (You’ll likely need to combine the
coefficients ỹm and ỹ−m into sines or cosines, unless your plotting package knows
about complex exponentials.) Does it converge to the step function? If it is not too
inconvenient, plot the partial sum up to n = 100, and concentrate especially on the
overshoot near the jumps in the function at 0, L/2, and L. This overshoot is called
the Gibbs phenomenon, and occurs when you try to approximate functions y(x) with
discontinuities.

One of the great features of the Fourier series is that it makes taking derivatives and
integrals easy.

(d) Show that the Fourier series of the derivative of a function y′(x) = dy/dx is ỹ′

m =
ikmỹm. Show, for m 6= 0, that the Fourier series for the integral of a function y(x) is
ỹm/(ikm).

What does the integral of our step function look like? Let’s sum the Fourier series for it!

(e) Consider the Fourier series whose coefficients are ỹm/(ikm), where ỹm is the complex
Fourier series you defined in part (b), and where you can set the m = 0 coefficient to
zero. This series should sum to an integral of the step function. Do partial sums up
to ±m = n, with n = 1, 3, and 5, again with A = 2 and L = 10. Would the derivative
of this function look like the step function? If it’s convenient, do n = 100, and notice
there are no overshoots.
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