
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 3, due Monday Sept. 15
Latest revision: September 3, 2003, 10:08 pm

Reading

Elmore & Heald, sections 1.6, 1.7, 1.8, 1.9

Feynman, I.23, I.49-1/2, I.50-1/4

Problems

Elmore & Heald, page 38, problems 1.8.1 (Steel wire), 1.8.4 (Continuity equation for energy
density).

(3.1) Traveling Wave on a String. The figure below shows a traveling wave propagating
to the right on a string at time t = 0. The tension is 8N and the string has mass per unit
length 2kg/m. The string has length 10m and has a fixed end at x = 0 and a free end at
x = 10m.
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(a) Draw a graph of the transverse velocity (chunk velocity) of the wave at time t = 0,
labeling your axes and giving units.

(b) Draw graphs of the energy density, the power, and the momentum density of the wave
at t = 0.

(c) Draw graphs of the height of the wave and its transverse velocity at t = 4 seconds.
Show that the total energy is the same as that at t = 0. Is the total momentum the
same?

(d) Draw a graph of the transverse velocity at x = 5 as a function of time, from t = −1
second to t = 4 seconds.

(e) A new pulse of the same shape but twice as high and half as wide is sent down the
wire. The energy density plot will be half as wide (why?) and how many times as
tall? How much will the total energy change?
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(3.2) Fourier wave. A musical instrument playing a note of frequency ω1 generates a
pressure wave P (t) periodic with period 2π/ω1: P (t) = P (t+2π/ω1). The complex Fourier
series of this wave is zero except for n = ±1 and ±2, corresponding to the fundamental ω1

and the first overtone. At n = 1, the Fourier amplitude is 2 − i, at n = −1 it is 2 + i, and
at n = ±2 it is 3. What is the pressure P (t)?

(A) exp ((2 + i)ω1t) + 2 exp (3ω1t)

(B) exp ((2ω1t)) exp (i(ω1t)) ∗ 2 exp (3ω1t)

(C) cos 2ω1t − sinω1t + 2 cos 3ω1t

(D) 4 cos ω1t − 2 sinω1t + 6 cos 2ω1t

(E) 4 cos ω1t + 2 sinω1t + 6 cos 2ω1t

(3.3) Pythag: Resonance.

We’ll be using a few computer simulations to illustrate ideas from the course. We don’t
expect long writeups. Download the program pythag, from the course Web site (or directly
from links at the bottom of

http://www.physics.cornell.edu/sethna/teaching/sss/pythag/pythag.htm).
The download will contain several programs: look for pythag.exe.

Play with the program for a while. Observe the effects of fixed, free, and reflectionless
boundary conditions. Using fixed boundary conditions on both sides, and “Wave” forcing
on the left, hit “Initialize” and “Run”: the system is periodically forced on the left bound-
ary at a frequency Ω and with an amplitude A that you can set on the Configure menu.
Change Ω to 10 rad/s, A to 0.01, and the time to run on the main controls to 10 s. (You
need to hit Enter to get changes to register: the number turns red to warn you.) Notice
that the string wiggles under the external forcing, but the amplitude never gets very large.

Now, using the tension τ , the mass per unit length µ1 (what Elmore & Heald calls λ0),
and a length L (all given under the Configure menu), find the frequencies ωm of the
standing waves. Change the frequency of the forcing frequency Ω to the frequency ω1 of
the fundamental mode, and reduce A to 0.002. How does the amplitude in the fundamental
mode build up? The small graph on the lower left shows the height Y of the center of the
string (our η) as a function of time: it should be oscillating with an increasing amplitude
ηmax ∼ tζ as the resonance builds up. Do the peaks seem to be growing linearly in time
(ζ = 1), or quadratically (ζ = 2), or what?

In your writeup, we’d like to see the frequency that you forced the program to excite the
fundamental, and a brief, qualitative description of the growth of the oscillation peaks in
time.
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(3.4) Pythag: Energy and Power.

Let a pulse be traveling down the string at the velocity of sound η(x, y) = f(x − vt). Use
the fact that this is a traveling wave to derive a formula giving the ratio of the potential
energy density to the kinetic energy density. Restart pythag (or select DEFAULT on the
presets), and verify your formula. (For the writeup, just note the maximum amplitude for
the kinetic and potential energy densities KE and PE.)

Derive a formula relating the power and the total energy density u for a traveling wave.
Verify your formula with pythag.

Be sure to remember: these two formulas only apply to traveling waves!

(3.5) Fourier Transforms

In problem set 1, we defined the complex Fourier series of a function confined to an interval
(0, L). Waves on strings, rods, and in boxes and tanks are all confined to defined regions,
but many waves are unconfined. Fourier transforms are like Fourier series, except that
the range of the function goes from (−∞,∞). The Fourier transform of a function y(x) is
another function ỹ(k):

ỹ(k) =

∫
∞

−∞

y(x) exp(−ikx) dx (3.5.1)

and you can retrieve the original function back by using the inverse Fourier transform:

y(x) = (1/2π)

∫
∞

−∞

ỹ(k) exp(ikx) dk (3.5.2).
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Figure 3.5.1 Gaussian Pulse centered at x0 = 0 of width σ = 1.

The famous function

G(x) =
1√
2πσ

exp(−(x − x0)
2/2σ2) 3.5.3

is usually called a normal distribution or a normalized Gaussian. It peaks at x0, and as
x− x0 → ±∞ the Gaussian dies rapidly to zero (because of the exponential of minus x2).
In fact, it starts getting small at about |x − x0| = ±σ. Thus the function is a pulse of
width σ centered at x0. It is of fundamental important in probability theory, in quantum
mechanics, and in statistical mechanics (last month of this course). It is also a good
example of a pulse (like the sound you might get from slapping your hand on the table).
Let’s call G0(x) the Gaussian with mean x0=0 and width σ = 1, pictured above.
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(a) Show that the Fourier transform G̃(k) = exp(−ikx0)G̃0(σk), by changing variables in
equation (3.5.1) from x to z = (x−x0)/σ. Notice that you should not need to do any
integrals!

The Gaussian G(x) has some nice properties: the integral (norm)
∫
∞

−∞
G(x) dx = 1, the

mean
∫
∞

−∞
xG(x) dx = x0, the variance (or square of the width)

∫
∞

−∞
(x−x0)

2G(x) dx = σ2.
Also, the Fourier transform of the standard Gaussian G0(x) of width one and mean zero
G̃0(k) = exp(−k2/2). The derivation for three of these four formulas is a bit tricky, so
treat them as given.

(b) Using the formulas above and your answer for part (a), give the general formula for
the real and imaginary parts of G̃(k). Draw pictures of the answer for σ = 2 and
x0 = 4, going from k = −2.5 to k = 2.5.

The Fourier transform of a Gaussian centered at zero is another Gaussian! It’s not nor-
malized, though: its height is always one at k = 0.

(c) In general, the value of the Fourier transform ỹ(k) at k = 0 gives which basic property
of y, the norm, mean, or variance?
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