
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 4, due Monday Sept. 22
Latest revision: September 12, 2003, 10:54 am

Experimental Lab I

Standing Waves, Monday evening 9/15 and Tuesday afternoon 9/16, Rock B26 and B30.

Computer Lab

Fourier Lab, Monday evening 9/22 and Tuesday afternoon 9/23, Rock B3 (hidden around
the corner in the basement).

Reading

Elmore & Heald, sections 4.1, 4.7, 12.1, 12.2

Feynman I.47, I.48-1/4, I.50-1/4

Problems

Elmore & Heald, page 41, problems 1.9.2 (Bead on a String). Use Pythag to see that the
pulse indeed does not stay the same shape: (a) set reflectionless boundary conditions on
both sides, (b) force with a pulse on the left, (c) make µ2 = 20, (d) make X12 = 4.99 and
X23 = 5.01, (e) set the graph time step to one and the amplitude A to 0.1.

(4.1) Reflection and Transmission.

A pulse of height AI , width XI , travels on a string of mass density µ1 and is incident on
a string of mass density µ2 = 9µ1. The strings are joined together, and have the same
tension. Which picture correctly describes the string after the pulse has interacted with
the junction between the two strings? The pictures are drawn to scale.

1



(4.2) Air in a tube.

L

OpenClosed

A tube of air of length L is closed on the left-hand side and open on the right. Which
pictures represent the pressure change p(x) from atmospheric pressure for the lowest two
resonant frequencies in this tube? (The solid line is the fundamental, the dashed line
represents the second lowest tone.)
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(4.3) Pythag: Reflection and Transmission.

Start up pythag, and choose the PRESET for STEPDOWN. The string comes in two
pieces, whose mass densities µ1 and µ2 can be read off the Configure menu. The thickness
of the lines roughly corresponds to the mass densities. To repeat a run, first Initialize,
then Run.

Notice some qualitative facts. (1) The pulses leaves the simulation without reflection at
the boundaries. I had to carefully match impedences at the boundary to avoid reflections.
(2) Notice that the string is continuous and has a continuous derivative at the junction.
(You can slow the pulse by lowering ”graph time skip” on the Configure menu.) (3) How
do the widths of the reflected and transmitted pulses compare to the incident pulse? How
about their duration in time, passing by a particular place? Why should their durations
agree? (4) Which is largest, the incident, reflected, or transmitted pulse? According to
your transmission formula, should that always be the case if µ2 < µ1? (5) Does the
reflected pulse invert or not? How about the reflected pulse for STEPUP? By taking the
limits where the mass density ratio goes to zero and infinity, argue why this is related to
reflection at fixed and free boundary conditions.

(4.4) Atoms: Dispersion and the 1-D Crystal.

In lecture we derived the equation of motion for the longitudinal displacements un of the
nth atom in a chain of atoms connected by springs,

∂2un

∂t2
= (K/M)[un+1 − 2un + un−1] (4.4.1)

where K is the spring constant and M is the atomic mass. Assume a plane-wave solution

un = sin (kna − ωt) (4.4.2)

where a is the equilibrium distance between atoms.

(a) Dispersion Relation. Plug in the trial solution equation (4.4.2) into equation (4.4.1).
Rewrite un±1 by expanding the sines, sin (k(n ± 1)a − ωt) = sin ((kna − ωt) ± ka) =
sin (kna − ωt) cos (ka)± cos (kna − ωt) sin (ka) and hence write your equation in the form
−ω2 (BLAH) = f(k) (BLAH). Solve for the dispersion relation, the frequency ω(k) =
√

−f(k) for each wave-vector k in our one-dimensional crystal.

(b) Continuum Limit. What is the speed of sound for our chain at long wavelengths?
To be specific, what is ω(k)/k (the phase velocity) as the wavelength goes to infinity and
hence k → 0? (A Taylor series under the square root might be useful.)

In the regular wave equation, where ω(k) = c k, both the group velocity dω/dk and the
phase velocity ω(k)/k give the speed of sound, independent of k.

(c) Using K/m = a = 1, plot the dispersion relation ω(k) for −π/a < k < π/a. On a
second graph, plot the group velocity and the phase velocity for 0 < k < π/a. Which
velocity is larger, for this dispersion relation?
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(4.5) Decibels. The power difference between sound A and B in dB is 10 log10(PA/PB),
where P is the power (energy per unit area). (Bels are named after Alexander Graham
Bell, the telephone guy; a decibel is a tenth of a Bel.) The threshold of hearing is around
zero decibels (0 dB). The threshold of pain is about 120 dB, and corresponds to a power
of about 1W/m2. From this and your knowledge of air and sound, estimate the amplitude
of the vibration of your eardrum at the threshold of audibility. (The bulk modulus of air
B is about 1.4× 105 N/m2; the density of air is about 1.2 kg/m3; the speed of sound in air
is about 340 m/s; a typical sound frequency might be 1000 Hz.) Compare this with other
natural scales of length: which is it closest to, the size of your ear, the width of a hair in
your cochlea, the width of a cell, the width of an atom, ....

(4.6) Fourier Series, Fourier Transforms, and FFTs.

In problem set 1, we introduced the Fourier series for periodic functions of period L,

ỹm = (1/L)

∫ L

0

y(x) exp(−ikmx)dx, (1.2.3)

where km = 2πm/L. The Fourier series, we saw explicitly in problem set 2, can be
resummed to retrieve the original function:

y(x) =

∞
∑

m=−∞

ỹm exp(ikmx). (1.2.2)

In problem set 3, we introduced the Fourier transform for functions on the infinite interval

ỹ(k) =

∫ ∞

−∞

y(x) exp(−ikx) dx (3.5.1)

where now k takes on all values. We regain the original function by doing the inverse
Fourier transform.

y(x) = (1/2π)

∫ ∞

−∞

ỹ(k) exp(ikx) dk (3.5.2),

~ y(
k)

kkkkkk 0−1−2−3−4−5
... k0 k k k k1 2 3 k4 5

Figure 4.6, Approximating the integral as a sum. By approximating the integral
∫

ỹ(k) exp(−ikx) dk as a sum over the equally spaced points km,
∑

m
ỹ(k) exp(−ikmx)∆k,

we can connect the formula for the Fourier transform to the formula for the Fourier series.

4



(a) Series → Transform. Let y(x) be a smooth function which is zero outside (0, L). By
what constant do you need to multiply the Fourier series coefficient ỹm in equation
(1.2.3) to get the Fourier transform ỹ(km) in (3.5.1)? Approximating the Fourier
transform integral (3.5.1) as a sum (as shown in Figure 4.6), use the Fourier series
formulas (1.2.2) and (1.2.3) to explain or derive the factor (1/2π) in equation (3.5.2).

As we take L → ∞ the spacing between the points km, 2π/L, gets smaller and smaller,
and the approximation of the integral as a sum gets better and better.

There is a remarkably fast numerical method, called the Fast Fourier transform. It starts
with N equally spaced data points y`, and returns a new set of complex numbers ỹFFT

m :

ỹFFT

m =

N−1
∑

`=0

y` exp(−i2πm`/N). (4.6.1)

(b) FFT → Series. We can use the FFT to give an approximation to the Fourier series.
Let y` = y(x`) where x` = `(L/N) = `(∆x). As in part (a), approximate the Fourier

series integral (1.2.3) above as sum over y`, (1/L)
∑N−1

`=0
y(x`) exp(−ikmx`)∆x. For

small positive m, give the constant relating ỹFFT
m to the Fourier series coefficient ỹm.

The Fourier series is defined for both positive and negative m, where the FFT gives
only positive m. Show that ỹFFT

m = ỹFFT

m+N
, and then argue how you can use this to

get the Fourier series coefficients for negative m by looking at the FFT near the end
of the list,

5


