
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 8, due Monday Oct. 27
Latest revision: October 21, 2003, 3:49 pm

Reading

Feynman, section I.30 (Diffraction), II.30 (Crystals), II.31 (Tensors), II.38-1/2 (Elasticity),
II.39.1/5 (Strain and Elasticity)

Possibly also useful: Elmore & Heald, sections 3.1-3.3, 7.4

Prelim II

Prelim II is tentatively scheduled for Wednesday November 5, pending discussion about
timing with the class. Prelim II will cover the higher-dimensional wave equations, interfer-
ence and diffraction, tensors, elasticity theory, elastic waves, and electromagnetic waves.
It will potentially include questions from the experimental lab Microwaves and Optics. It
will be a similar format to the last exam.

Problems

(8.1) Diffraction Grating. A 10 cm wide diffraction grating with 10000 slits is used to
measure the wavelengths emitted by hot hydrogen gas. (a) At what angles θ in the first
order spectrum do we expect to find the two violet lines of wavelengths 434 and 410nm?
(b) Same question but for second order.

(8.2) Thick Slits and Windows. Start up Huygens. Set the “Number of Slits” to one
and the width a of the slit to 5 m. Notice the single-slit diffraction pattern on the right.
Notice that the waves on the left look much like you’d expect for light coming in a window:
light traveling along straight lines. How do we reconcile these two pictures?
Bring the screen in closer: try “X Screen” at 10 and 1 meter. (If you get too close, you’ll
begin to see my numerical method for generating the slit.) Now vary the wavelength. How
much farther does the intensity look “window-like” at λ = 0.35 than for λ = 0.7? Finally,
vary the slit width a. With λ = 0.7, what distance to the screen for a = 2.5 looks the
same shape as 10m for a = 5?
Explain why you can hear around corners, but you can’t see around corners.

(8.3) Double Thick Slit. Start up Huygens. Set d to 8m, and a to 2m. You should see
a complicated interference pattern. Now set the number of slits to one. Is the single slit
pattern the envelope of the double thick-slit pattern? Set the number of slits back to two,
and set a to zero. Is the thin-slit pattern like the carrier wave?
Show that the intensity for a double-slit with distance d between the centers and width
a for each slit is the product of the single-slit diffraction pattern of width a and the
double thin-slit diffraction pattern. (Hint: Remember that the amplitude of the wave at
the screen is proportional to the Fourier transform of the slit-opening function E(θ) =

Re
(

Aeiωtf̃(k sin θ)
)

. You can find how the amplitude from the upper slit changes as it is

translated upward by d/2 by using the properties of Fourier transforms under translation.)
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(8.4) Interference A coherent laser beam impinges on a slit of width a. An intensity
pattern is viewed on a distant screen: the center has intensity I0 and the peak width
(distance between the nearest minima) is ∆Y . The slit is broadened to 2a. What is the
new intensity Idoubled and peak minimum separation ∆Y ′? You may assume that the
angles are small, so sin θ ≈ θ.

(A) I ′ = 4I0, ∆Y ′ = ∆Y/2.

(B) I ′ = 2I0, ∆Y ′ = ∆Y/2.

(C) I ′ = 2I0, ∆Y ′ = ∆Y/4.

(D) I ′ = 4I0, ∆Y ′ = 2∆Y.

(E) I ′ = 2I0, ∆Y ′ = 2∆Y.

(8.5) Traction-free boundary condition.

z

y

x

An isotropic elastic medium is strained as shown above: it is compressed and stretched
along different axes. The stress tensor is

σij =





a −a 0
−a a 0

0 0 −2a



 .

The medium has a flat free surface perpendicular to the axis n̂. A free surface is a surface
on which there is no traction, or forces, applied: for example, a surface exposed to vacuum
(or approximately, to air). Knowing the stress tensor above, in which direction n̂ could
the surface normal point?

(A) n̂ = (1, 0, 0)

(B) n̂ = (0, 1, 0)

(C) n̂ = (0, 0, 1)

(D) n̂ = (1/
√

2, 1/
√

2, 0)

(E) n̂ = (1/
√

2,−1/
√

2, 0)

(F) n̂ = (1/
√

2, 1/
√

2, 1/
√

2)

Draw n̂ and the strained cube, and convince yourself that the surface perpendicular to n̂
would be free.
Related formulæ: Fi/A = σijn̂j , Fi = ∂jσij , σij = cijklεkl = 2µεij + λεkkδij
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(8.6) The Power of Tensors. Remember from last week the definitions of the two most
important tensors: the Kronecker delta function δij = 1 if i = j, δij = 0 if i 6= j, and
the totally antisymmetric tensor εijk = −εjik = −εikj = −εkji with ε123 = 1. Remember
the identities that you proved: δii = 3, εijkδjk = 0, εijkεijk = 6, εijkεij` = 2δk`, and
εijmεk`m = δikδj` − δi`δjk. Notice that one can conveniently use tensor notation to write
the gradient (∇ψ)i = ∂iψ, divergence ∇ · a = ∂iai, and curl (∇× a)i = εijk∂jak.

Use these formulas to prove the following vector identities (listed in the front of Jackson,
Classical Electrodynamics):

a · (b× c) = b · (c × a) = c · (a × b)

a × (b× c) = (a · c)b− (a · b)c

(a× b) · (c × d) = (a · c)(b · d) − (a · d)(b · c)

∇×∇ψ = 0

∇ · (∇× a) = 0

∇× (∇× a) = ∇(∇ · a) −∇2a

∇ · (ψa) = a · ∇ψ + ψ∇ · a

∇× (ψa) = ∇ψ × a + ψ∇× a

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b × (∇× a)

∇ · (a × b) = b · (∇× a) − a · (∇× b)

∇× (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b

HInt: You’ll need to use the fact that the second derivative doesn’t depend upon the order
of variables (∂i∂jf = ∂j∂if) and the product rule (∂i(f g) = (∂if)g + f(∂ig).
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