
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 9, due Monday Nov. 3
Latest revision: November 4, 2003, 11:27 am

Reading

Feynman II.39.1/5 (Strain and Elasticity), I.51.3/4 (Waves in Solids and Surface Waves),
II.39-3/4 (Elastic Motion), II.19 (The Principle of Least Action: not for credit), II.20
(Solutions of Maxwell’s Equations in Free Space), and II.32 (Refractive Index of Dense
Materials).

Possibly also useful: Elmore & Heald, sections 7.4, 7.5, 7.6, 8.1-8.5; don’t worry about the
obsolete notation of dyadics and stuff.

Prelim II

Prelim II is tentatively scheduled for Wednesday November 5, pending discussion about
timing with the class. Prelim II will cover the higher-dimensional wave equations, interfer-
ence and diffraction, tensors, elasticity theory, elastic waves, and electromagnetic waves.
It will potentially include questions from the experimental lab Microwaves and Optics. It
will be a similar format to the last exam.

Experimental Lab III

Interference and Diffraction, Monday evening 11/10 and Tuesday afternoon 11/11, Rock
B26 and B30.

Problems

(9.1) Strain fields at large rotations. Show for a rotation about the z axis by an angle
θ that the gradient of the displacement field ∂jui is

~∇~u =





cos(θ) − 1 sin(θ) 0
− sin(θ) cos(θ) − 1 0

0 0 0



 .

Calculate the strain field εapprox
ij = (1/2)(∂iuj + ∂jui) and show that it is not small. How

large a rotation would give a 1% strain component to the strain tensor (and hence lead
to plastic deformation)? Now calculate the true strain matrix including the “geometric
nonlinearity” εij = (1/2)(∂iuj + ∂jui + ∂iuk∂juk) and show that it is zero.

(9.2) Elastic Moduli.

In an isotropic material, only two elastic moduli are independent: all others can be
written in terms of them. The tensor relation between strain and stress is most nicely
written in terms of the two Lamé elastic constants λ and µ:

σij = 2µεij + λεkkδij . (8.6.1)
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The constant µ is just the shear modulus (Feynman eqn. II.38.14); the constant λ =
B − 2µ/3, where B is the bulk modulus (Feynman’s K, eqn. II.38.9).

(a) Show that bulk compression has three non-zero components: εxx = εyy = εzz =
∆V/(3V ). Knowing that the stress σxx = B∆V/V , check the formula for the bulk
modulus given above.

If we put a force per unit area σxx = F/A stretching our material in the x-direction, and
we don’t constrain the sides (so σij = 0 except along x, i = j = 1), the material will stretch
by an amount ∆L/L = (1/Y )F/A, where Y is the Young’s modulus. It also compresses
in the y and z directions by Poisson’s ratio∗ ν times the extension along the x direction,
so the width and height change by ∆W/W = ∆H/H = −ν∆L/L.

(b) Write the stress tensor σij and the strain tensor εkl for this problem, as 3×3 matrices.

(c) Use your answers to part (b) and the equation (8.6.1) relating stress and strain for
isotropic materials, solve for Young’s modulus Y and Poisson’s ratio ν in terms of λ
and µ.

(9.3) Elastic Waves.

A small crack starts on the inside of a concrete dam, gener-
ating acoustic waves of all polarizations with wavelengths
much shorter than the thickness D of the dam. An acous-
tical detector is positioned outside the dam directly oppo-
site to the crack. The concrete can be assumed to be an
isotropic medium with positive elastic constants λ and µ.
What signal is expected in the acoustical detector?

(A) A transverse sound pulse, followed by a longitudinal sound pulse.

(B) A longitudinal sound pulse, followed by a transverse sound pulse.

(C) A transverse sound pulse only: sound is a transverse wave.

(D) A longitudinal sound pulse only: the transverse sound component will travel along
the length and width of the dam, not across the thickness.

(E) A sound pulse after a time t = D/
√

Y/ρ, where Y is the Young’s modulus of concrete.

Related formulæ: ρ∂2ui/∂t2 = (λ + µ)∂i∂juj + µ∂j∂jui. With ∇ · uT = 0, cT =
√

µ/ρ;

with ∇× uL = 0, cL =
√

(λ + 2µ)/ρ

∗ We use ν for Poisson’s ratio, as the engineers do, reserving σ for the stress tensor.

2



(9.4) Tensor Notation Review. Suppose B = ∇×A. Which of the following are correct
formulas for B2? (For example, the energy contained in a magnetic field is B2/8π.)

(A) εijk∂jAkεi`m∂`Am.
(B) (δj`δkm − δjmδk`)(∂jAk)(∂`Am).
(C) (∂jAk)2 − (∂jAk∂kAj).
(D) All of the above.
(E) None of the above.

(9.5) Elastic Traveling Wave. An isotropic elastic medium with density ρ and moduli λ
and µ fills the half space x > 0. The boundary of this medium is wiggled with displacement
field

u(0, y, z) = (f(t), g(t), h(t)) ,

generating an elastic wave travelling to the right (positive x direction).
What is the displacement u(x, y, z, t) for x > 0?

(A) u(x, y, z, t) = (0, g(t− x/c), h(g − x/c)).

(B) u(x, y, z, t) = (f(t − x/
√

(λ + 2µ)/ρ), g(t− x/
√

µ/ρ), h(t − x/
√

µ/ρ)).

(C) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− x/
√

(λ + 2µ)/ρ), h(t − x/
√

(λ + 2µ)/ρ)).

(D) u(x, y, z, t) = (f(x −
√

µ/ρ t), g(x−
√

(λ + 2µ)/ρ t), h(x −
√

(λ + 2µ)/ρ t)).

(E) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− y/
√

(λ + 2µ)/ρ), h(t − z/
√

(λ + 2µ)/ρ)).

(9.6) Waves on a Thin Wire. A plane wave of wave vector k passes along the x̂ direction
through a thin wire of radius W . The wire width W is thin compared to the wavelength,
so kW << 1. The material making up the wire is isotropic, with elastic moduli λ and µ.
The wave at t = 0 is approximately given by the real part of

u = Aei(kx−ωt)

(

1 − ν
k2(y2 + z2)

2
,−ikyν,−ikzν

)

where we use the engineering notation ν for Poisson’s ratio ν = λ/2(µ+λ).∗ This formula
is correct up to terms of order k3W 3. The wave is primarily longitudinal, for small k (the
y and z components of u are smaller by a factor of kW than the x component). The
wave is basically stretching and compressing the wire along the x̂ direction, with a small
correction.

(a) Ignoring for the moment the term proportional to k2, show that the y and z compo-
nents are just what one would expect from Poisson’s ratio applied to the amount the
wire is stretched along the x direction.

The k2 term took me a long time to figure out the first year I taught this. I don’t have a
simple explanation for it, but without keeping it you get the wrong sound velocity even as
k → 0.

∗ Feynman and E&H use σ for Poisson’s ratio, which we use for the stress tensor.
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(a) Compute the strain tensor ε(x, y, z, t) for this displacement field, ignoring the geomet-
ric nonlinearity. Write it out as a 3×3 matrix.

(b) The wire is isotropic, with elastic moduli λ and µ. Write the stress tensor for the wire
as a 3×3 matrix.

(c) (Not for credit: gluttons for punishment only.) Check that this displacement field
satisfies Newton’s law

ρ∂2ui/∂t2 = ∂jσij

and has zero stress at the surface of the wire up to terms of order k3 and kω2, with
ω = ck and c =

√

Y/ρ.

Thus longitudinal sound down a thin wire travels with a speed of sound set by Young’s
modulus.
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