
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 10, due Monday Nov. 17
Latest revision: December 11, 2003, 4:34 pm

Reading

Feynman, I.1 Atoms in Motion, I.6 Probability, & I.43 Diffusion

Schroeder, chapter 1. Browse section 6.4 (Maxwell distribution of velocities).

Problems

Schroeder,
(1.12) How Dilute is Air? Assume small molecules are around 0.4 nm in diameter.

Remember PV = NkBT with kB = 1.381 × 10−23, Patm ∼ 1.013 × 105Pa, and
T ∼ 300K.

(1.18) Molecular Velocities. Remember the kinetic energy (1/2)mv2 of molecules equals
(3/2)kBT . The mass of a N2 molecule is m = 2mNi ∼ 28mp ∼ (28gm/NA) ×
1kg/1000gm = 4.65 × 10−26kg.

(1.33) P-V diagram. Make a table with rows A, B, C, and “Whole Cycle” and columns
“Work done on gas”, “Change in Energy content of gas”, and “Heat added to gas”.
Relevant formulas: Work on gas = -

∫

P dV ; energy in gas U = Nf(kBT/2) =
(Nf/2)PV .

(1.60) Frying Pan. Do this three ways. (a) Guess the answer from your own experience.
If you’ve always used aluminum pans, consult a friend.

(b) Use an argument analogous to Schroeder’s equation (1.71) to get a rough
answer. Note: For iron, the specific heat cp = 450J/kg · C, the density ρ =
7900kg/m3, and the thermal conductivity kt = 80W/m·C. You need to transport
heat cpρV ∆T across an area A = V/∆x. How much heat will flow across that
area per unit time, if the temperature gradient is roughly assumed to be ∆T/∆x?
How long δt will it take to transport the amount needed to heat up the whole
handle?

(c) Roughly model the problem as the time needed for a pulse of heat at x = 0
on an infinite rod to spread out a distance equal to the length of the handle, and
use the Greens function for the heat diffusion equation (problems 10.3 and 10.4
below). How long until the pulse spreads out a root-mean square distance σ(t)
equal to the length of the handle?

(10.1) Random walks in Grade Space. Let’s make a simple model of the prelim grade
distribution. Let’s imagine a multiple-choice test of ten problems of ten points each. Each
problem is identically difficult, and the mean is 70. How much of the point spread on
the exam is just luck, and how much reflects the differences in skill and knowledge of the
people taking the exam? To test this, let’s imagine that all students are identical, and that
each question is answered at random with a probability 0.7 of getting it right. What is the
expected mean and standard deviation for the exam? (Work it out for one question, and
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then use our theorems for a random walk with ten steps.) A typical exam with a mean
of 70 might have a standard deviation of about 15. What physical interpretation do you
make of the ratio of the random standard deviation and the observed one?

(10.2) Probability Distributions. I’m assuming you’re familiar with probabilities for
discrete events (like coin flips and card games), but you probably haven’t worked much
with probability distributions for continuous variables (like human heights and atomic
velocities). The three probability distributions most commonly encountered in physics
are: (i) Uniform: ρuniform(x) = 1 for 0 ≤ x < 1, ρ(x) = 0 otherwise; produced by random
number generators on computers. (ii) Exponential: ρexponential(t) = e−t/τ/τ for t ≥ 0,
familiar from radioactive decay and used in the collision theory of gases. (iii) Gaussian:

ρgaussian(v) = e−v2/2σ2

/(
√

2πσ), describing the probability distribution of velocities in a
gas, the distribution of positions at long times in random walks, the sums of random
variables, and the solution to the diffusion equation.

(a) Likelihoods. What is the probability that a random number uniform on [0, 1) will
happen to lie between x = 0.7 and x = 0.75? That the waiting time for a radioactive
decay of a nucleus will be more than twice the exponential decay time τ? That your
score on an exam with Gaussian distribution of scores will be greater than 2σ above
the mean? (Note:

∫∞

2
(1/

√
2π) exp(−v2/2) dv = (1 − erf(

√
2))/2 ∼ 0.023.)

(b) Normalization, Mean, and Standard Deviation. Show that these probability
distributions are normalized:

∫

ρ(x)dx = 1. What is the mean x0 of each distribution?

The standard deviation
√

∫

(x − x0)2ρ(x)dx? (Hint:
∫∞

−∞
(1/

√
2π) exp(−x2/2) dx =

∫∞

−∞
x2(1/

√
2π) exp(−x2/2) dx = 1).

(c) Sums of variables. Draw a graph of the probability distribution of the sum x+ y of
two random variables drawn from a uniform distribution on [0, 1). Argue in general
that the sum z = x + y of random variables with distributions ρ1(x) and ρ2(y) will
have a distribution given by the convolution ρ(z) =

∫

ρ1(x)ρ2(z − x) dx.

(d) Multidimensional probability distributions. In statistical mechanics, we of-
ten discuss probability distributions for many variables at once (for example, all the
components of all the velocities of all the atoms in a box). Let’s consider just the
probability distribution of one molecule’s velocities. If vx, vy, and vz of a molecule are

all distributed with a Gaussian distribution with σ =
√

kT/M (Feynman’s equation
40.9, next week), then we describe the combined probability distribution as a function
of three variables as the product of the three Gaussians:

ρ(vx, vy, vz) =1/(2π(kT/M))3/2 exp(−mv2/2kT )

=

(

√

M

2πkT
e

−Mv2
x

2kT

)(

√

M

2πkT
e

−Mv2
y

2kT

)(

√

M

2πkT
e

−Mv2
z

2kT

)

.

Show, using your answer for the standard deviation of the Gaussian in part (b), that
the mean kinetic energy is kT/2 per dimension. Show that the probability that the
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speed is v = |v| is given by a Maxwellian distribution

ρMaxwell(v) =
√

2/π(v2/σ3) exp(−v2/2σ2).

(Hint: What is the probability that |v| is between vr and vr + ∆r, for small ∆r? The
area of a sphere of radius R is 4πR2.)

(e) Assuming the probability distribution for the z component of velocity given in part (d),

ρ(vz) =

(

√

M
2πkT

e
−Mv2

z
2kT

)

, give the probability density that an N2 molecule will have a

vertical component of the velocity equal to the escape velocity from the Earth (about
10 km/sec, if I remember right). Do we need to worry about losing our atmosphere?
(Hint: this is closely related to Schroeder’s problem 1.18.) Optional: Try the same
calculation for H2, where you’ll find a substantial leakage. You’ll want to know that
there are 3 × 1016 seconds in a billion years, and molecules collide (and scramble
their velocities) many times per second. That’s why Jupiter has hydrogen gas in its
atmosphere, and Earth does not.

(10.3) Thermal Diffusion. The rate of energy flow in a material with thermal conduc-
tivity kt and a temperature field T (x, y, z, t) = T (r, t) is J = −kt∇T (see Feynman eq.
43.41). Energy is locally conserved, so the energy density E satisfies ∂E/∂t = −∇ · J.

(a) If the material has constant specific heat cp and density ρ, so E = cpρT , show that
the temperature T satisfies the diffusion equation ∂T/∂t = kt

cpρ∇2T . (See Schroeder,

problem 1.62).

(b) By putting our material in a cavity with microwave standing waves, we heat it with
a periodic modulation T = sin(kx) at t = 0, at which time the microwaves are turned
off. Show that amplitude of the temperature modulation decays exponentially in time.
How does the amplitude decay rate depend on wavelength λ = 2π/k?

(10.4) Heat Diffusion Spot. The diffusion equation for the heat density in a two-
dimensional sheet is

∂q/∂t = K(∂2q/∂x2 + ∂2q/∂y2).

(a) Diffusion in Two Dimensions. Show that if f(x, t) satisfies the diffusion equation
in one dimension, then f(x, t)f(y, t) solves the diffusion equation in two dimensions.
(Related formulæ: Product Rule, ∂fg/∂z = ∂f/∂z g + f ∂g/∂z.)

(b) The heat spot. A screen of thermal diffusion constant K is heated at x = y = 0 and
t = 0 by a thin laser beam pulse. The total heat deposited is Q. Use part (A) and the
Greens function for the one dimensional diffusion equation to derive the equation for
q(x, y, t), the heat density after a time t. What is the root-mean-square radius r(t) =
√

〈x2 + y2〉 for this spot? (Related formulæ: ∂ρ/∂t = D∂2ρ/∂x2; If ρ(x, 0) = δ(x),

ρ(x, t) = G(x, t) = 1√
4πDt

e−x2/4Dt and 〈x2〉 = 2Dt; 〈f(z)〉 =
∫

f(z)ρ(z) dDz.)
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