
Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 1, due Monday Sept. 1
Latest revision: December 18, 2003, 3:15 pm

Reading

Elmore & Heald, section 1.1
Feynman, I.22-5/6

Problems

(1.1) Bead on a String.

x=0

Mass
  M

A bead of mass M is attached at x = 0 to a string of mass density λ0 stretched with
horizontal tension τ . The string extending to the left (negative x) has height η1(x, t), and
to the right it has height η2(x, t). The bead has height y(t) = η1(0, t) = η2(0, t). What is
the formula for the acceleration of the bead? (Draw the free body diagram!)

(A) d2y/dt2 = (τ/M)∂2η/∂x2

(B) d2y/dt2 = (τ/M)(η2(0, t) − η1(0, t))
(C) d2y/dt2 = (τ/M)(η1(0, t) − η2(0, t))

(D) d2y/dt2 = (τ/M)
(

∂η2
∂x |x=0 − ∂η1

∂x |x=0

)

(E) d2y/dt2 = (λ0/2τ)
(

∂2η1
∂x2 |x=0− + ∂2η2

∂x2 |x=0+

)
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(1.2) Fourier Series. The laws for the motion of stretched strings, of the surface of
water, of sound, and of electromagnetic radiation are called wave equations because they
all have special solutions of the form of sinusoidal waves. That is, a string with initial
height A sin(kx) or B cos(kx) will time evolve in a particularly simple way. We need to
review some mathematics about sinusoidal waves.

(a) (Review) What is the wavelength of the shape A sin(kx), where x is the distance
measured along the string?

We call k the wave vector for the wave.

(b) (Review) Suppose we study a stretched string with the ends at x = 0 and x = L held
fixed at height y = 0. Calculate the values km at which η(x) = A sin(kx) satisfies
these two boundary conditions. (To be specific, let m − 1 be the number of zeros, or
nodes, for y(x) inside the string, not including the boundaries. For this problem, all
values of km should be positive.)

In this course, we will make extensive use of complex numbers. In quantum mechanics,
the waves really involve complex amplitudes, but for this course the complex numbers are
just a way to make the mathematics simpler: our waves will be the real parts of complex
waves. You should remember the formula

exp(ikx) = cos(kx) + i sin(kx). (1.2.1)

Thus cosine waves are the real part of the complex wave exp(ikx).

(c) (Review) If k is positive, for what smallest positive value of x0 is the real part of
exp(ik(x − x0)) a sine wave, sin(kx)?

The Fourier series for a function y(x) is an expansion in terms of sinusoidal waves. Elmore
and Heald concentrate on the Fourier sine and cosine expansions. In our work, we’ll
use complex Fourier series. Suppose we have a function y(x) defined on 0 ≤ x ≤ L,
with y(0) = y(L). (This is called periodic boundary conditions, since we can make y
into a periodic function by placing new copies side-by-side over each period L.) Various
mathematical theorems tell us that we can write y(x) as an infinite series

y(x) =
∞∑

m=−∞
ỹm exp(ikmx). (1.2.2)

in terms of the complex sinusoidal waves exp(ikmx) which satisfy the same boundary
condition.

(d) Show that y(x) = exp(ikmx) satisfies y(0) = y(L) if km = 2πm/L (here km may be
positive or negative). Are these the same wave vectors as you found in part (b)?

The formula for the complex Fourier series coefficients ỹm of a function y(x) in an interval
of length L is

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx. (1.2.3)
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Mathematical theorems tell us that the sum in equation (1.2.2) converges to y(x) if we use
the coefficients from equation (1.2.3). Also, the coefficients are unique: if the coefficients
aren’t all the same, the functions are different.

(e) Use equation (1.2.3) to compute the Fourier coefficients ỹm with m = −1, 0, and 1, for
sin(2πx/5), in an interval of length L = 5. Check this using the well-known formula
sin(θ) = (exp(iθ) − exp(−iθ)) /2i. Without using the formula (1.2.3), but using the
fact that the coefficients are unique, give all the Fourier coefficients for 7 cos(18πx/5),
again with L = 5. (Hint: what’s the well-known formula for cos(θ)?)

Decomposing a function into a Fourier series, equation (1.2.2), is like writing a vector as
a sum v = axx̂ + ayŷ + az ẑ. Instead of a three-dimensional space of vectors, we have an
infinite-dimensional space of functions. Our “unit vectors” are the complex exponential
waves exp(ikmx). Finding the coefficients, equation (1.2.3), is like taking the dot product
to find the coefficient in the expansion, ax = v · x̂, etc., except that the dot product of two
complex functions is generalized to an integral of one times the complex conjugate of the
other,

f · g = (1/L)
∫ L

0

f(x)g∗(x) dx. (1.2.4)

The dot products of different unit vectors x̂ · ẑ = 0: they are orthogonal to one another.
Also, the unit vectors are normalized, so x̂ · x̂ = 1.

(f) Show that our Fourier series functions exp(ikmx) with km = 2πm/L are normalized
under the dot product (1.2.4). Show that any two different Fourier series functions
m �= n are orthogonal under the dot product (1.2.4).

(1.3) Fourier Series: Computer Lab.

Download the executables for Fourier from the bottom of the course home page. (The
Windows version works, as far as I know. The Linux version may not: let me know if you
have success or not, and which version of Linux you run.) When you start it up, you’ll find
at left a graph of the function y(x), and at right the Fourier series ỹ(km) for the function.
Thus to get m in ỹm, take the coordinate along the horizontal axis and multiply by L/2π.

Use Fourier to check your answers for problem 1.2(e). In particular, (i) set L = 5, (ii) find
m and x0 to plot y(x) = sin(2πx/5), and (iii) read off the Fourier coefficients from the right
graph. (You can zoom in with the mouse. Black is the real part, red the imaginary part.)
Do they agree with those you found in 1.2(e)? Then (iv) find m, x0, and the amplitude A
to generate 7 cos(18πx/5), (v) double the number of points N repeatedly until y(x) looks
like a smooth sine wave, and (vi) read off the Fourier transform. Does it agree?
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 2, due Monday Sept. 8
Latest revision: December 18, 2003, 3:15 pm

Reading

Elmore & Heald, sections 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
Feynman, sections I.22-5, I.22-6, I.23 Feynman, sections I.50-1/4

Problems

Elmore & Heald, page 7, problem 1.2.3 (stationary initial condition), and page 13, problem
1.3.2 (a).

Quick ones.

Elvis. Elvis notices that his A string on his guitar is off pitch: it is vibrating at 445 Hz.
He wants it to sound at 440 Hz.
(a) Is his guitar string sharp (too high pitch) or flat (too low)?
(b) Elvis twists the little knob at the top of the string to tune it to 440 Hz. Did he tighten

or loosen the tension?
(c) By what percentage does he change the tension?

Sympathetic Vibration. Consider two strings of equal mass density and length. When
the strings are near each other, starting string 1 vibrating in its fundamental mode causes
string 2 to vibrate in its third (n=3) natural mode. What is the ratio of the tension of
string 1 to string 2?

Numerical Derivatives. The angle θ(t) of a pendulum is measured at three different
times: θ(1.8) = 0.72, θ(2.0) = 0.74, and θ(2.2) = 0.82. Estimate the accelleration ∂2θ/∂t2

at t = 2.0.

Big ones.

(2.1) Solving the Wave Equation Numerically

Consider a string of length L that is shaken up and down at the left end η(0, t) = f(t) and
is fixed in position η(L, t) ≡ 0 at the right end.

∂2η

∂t2
= c2 ∂2η

∂x2
(1)

To solve this equation numerically, we must discretize the string into chunks of size δx in
space, and take small, discrete time steps δt in time.
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(a) Derive the approximate formula for the second derivative

∂2η

∂x2
≈ η(x + δx, t) − 2η(x, t) + η(x − δx, t)

δx2
(2)

from the approximate formula for the first derivative

∂η

∂x
(x0) ≈ η(x0 + ε/2) − η(x0 − ε/2)

ε
. (3)

(Hint: pick ε = δx and x0 = x ± δx/2. It may help to draw a picture of where you
are evaluating the first and second derivatives.)

(b) Applying this approximate formula to the wave equation (1), show that we can write
the future position of the string in terms of the past and present. If our wire is broken
up into N chunks of size δx = L/N ,

x0 ≡ 0, x1 = δx, . . . xN = Nδx ≡ L (4)

show that

η(xi, t + δt) ≈ 2η(xi, t) − η(xi, t − δt) + (c δt/δx)2 (η(xi+1, t) − 2η(xi, t) + η(xi−1, t)) .
(5)

Notice that this equation applies for i = 1, . . .N − 1, but not for i = 0 or i = N .
These boundary conditions have to be supplied separately: in our case, fixed on the
right, forced on the left.

(c) Write a program (using Matlab, Mathematica, a spreadsheet, or any other method
of your choice) to solve this wave equation with L = 15m, c = 2m/s, δx = 0.5m,
δt = 0.1s, and

f(t) = exp(−(6 − t)2/4). (6)

Use the evolution equation (5) and the initial conditions

η(xi, 0) ≡ η(xi,−δt) ≡ 0. (6)

When should the pulse center hit the right end of the string? Plot the pulse shape
when the center is partway to the wall, when your analysis says it should be hitting
the wall (notice the numerical error in our calculation), and after it is reflected. Where
do you think the energy is stored when the pulse is at the wall?
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(2.2) Fourier Series and Gibbs Phenomenon

0 L 0.2 L 0.4 L 0.6 L 0.8 L 1 L

x

-1A

-0.5A

0A

0.5A

1A

y(
x)

Step function y(x)
Crude approximation

Step Function

Figure 2.2.1 Step Function.

We defined complex Fourier series in the last problem set:

y(x) =
∞∑

m=−∞
ỹm exp(ikmx), (1.2.2)

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx, (1.2.3)

with km = 2πm/L. In this problem set, we’ll look at the Fourier series for a couple of
simple functions, the step function (above) and the triangle function.

Consider a function y(x) which is A in the range 0 < x < L/2 and minus A in the range
L/2 < x < L (shown above). It’s a kind of step function, since it takes a step downward
at L/2.∗

(a) As a crude approximation, the step function looks a bit like a chunky version of a sine
wave, A sin(2πx/L). In this crude approximation, what would the complex Fourier
series be?

(b) Show that the odd coefficients for the complex Fourier series of the step function are
ỹm = −2Ai/(mπ) (m odd). What are the even ones? Check that the coefficients ỹm

with m = ±1 are close to those you guessed in part (a).

∗ It can be written in terms of the standard Heaviside step function Θ(x) = 0 for x < 0
and Θ(x) = 1 for x > 0, as y(x) = A (1 − 2Θ(x − L/2)).
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(c) Setting A = 2 and L = 10, plot the partial sum of the series equation (1.2.2) for
m = −n,−n + 1, . . . , n with n = 1, 3, and 5. (You’ll likely need to combine the
coefficients ỹm and ỹ−m into sines or cosines, unless your plotting package knows
about complex exponentials.) Does it converge to the step function? If it is not too
inconvenient, plot the partial sum up to n = 100, and concentrate especially on the
overshoot near the jumps in the function at 0, L/2, and L. This overshoot is called
the Gibbs phenomenon, and occurs when you try to approximate functions y(x) with
discontinuities.

One of the great features of the Fourier series is that it makes taking derivatives and
integrals easy.

(d) Show that the Fourier series of the derivative of a function y′(x) = dy/dx is ỹ′
m =

ikmỹm. Show, for m �= 0, that the Fourier series for the integral of a function y(x) is
ỹm/(ikm).

What does the integral of our step function look like? Let’s sum the Fourier series for it!

(e) Consider the Fourier series whose coefficients are ỹm/(ikm), where ỹm is the complex
Fourier series you defined in part (b), and where you can set the m = 0 coefficient to
zero. This series should sum to an integral of the step function. Do partial sums up
to ±m = n, with n = 1, 3, and 5, again with A = 2 and L = 10. Would the derivative
of this function look like the step function? If it’s convenient, do n = 100, and notice
there are no overshoots.
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 3, due Monday Sept. 15
Latest revision: December 18, 2003, 3:15 pm

Reading
Elmore & Heald, sections 1.6, 1.7, 1.8, 1.9
Feynman, I.23, I.49-1/2, I.50-1/4

Problems

Elmore & Heald, page 38, problems 1.8.1 (Steel wire), 1.8.4 (Continuity equation for energy
density).

(3.1) Traveling Wave on a String. The figure below shows a traveling wave propagating
to the right on a string at time t = 0. The tension is 8N and the string has mass per unit
length 2kg/m. The string has length 10m and has a fixed end at x = 0 and a free end at
x = 10m.

2 m/s

(m)

1

2

3

0
0

Fr
ic

tio
nl

es
s 

R
od

Free End

8642 10
X (m)

η

(a) Draw a graph of the transverse velocity (chunk velocity) of the wave at time t = 0,
labeling your axes and giving units.

(b) Draw graphs of the energy density, the power, and the momentum density of the wave
at t = 0.

(c) Draw graphs of the height of the wave and its transverse velocity at t = 4 seconds.
Show that the total energy is the same as that at t = 0. Is the total momentum the
same?

(d) Draw a graph of the transverse velocity at x = 5 as a function of time, from t = −1
second to t = 4 seconds.

(e) A new pulse of the same shape but twice as high and half as wide is sent down the
wire. The energy density plot will be half as wide (why?) and how many times as
tall? How much will the total energy change?
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(3.2) Fourier wave. A musical instrument playing a note of frequency ω1 generates a
pressure wave P (t) periodic with period 2π/ω1: P (t) = P (t+2π/ω1). The complex Fourier
series of this wave is zero except for n = ±1 and ±2, corresponding to the fundamental ω1

and the first overtone. At n = 1, the Fourier amplitude is 2 − i, at n = −1 it is 2 + i, and
at n = ±2 it is 3. What is the pressure P (t)?

(A) exp ((2 + i)ω1t) + 2 exp (3ω1t)

(B) exp ((2ω1t)) exp (i(ω1t)) ∗ 2 exp (3ω1t)

(C) cos 2ω1t − sinω1t + 2 cos 3ω1t

(D) 4 cos ω1t − 2 sinω1t + 6 cos 2ω1t

(E) 4 cos ω1t + 2 sinω1t + 6 cos 2ω1t

(3.3) Pythag: Resonance.

We’ll be using a few computer simulations to illustrate ideas from the course. We don’t
expect long writeups. Download the program pythag, from the course Web site (or directly
from links at the bottom of

http://www.physics.cornell.edu/sethna/teaching/sss/pythag/pythag.htm).
The download will contain several programs: look for pythag.exe.

Play with the program for a while. Observe the effects of fixed, free, and reflectionless
boundary conditions. Using fixed boundary conditions on both sides, and “Wave” forcing
on the left, hit “Initialize” and “Run”: the system is periodically forced on the left bound-
ary at a frequency Ω and with an amplitude A that you can set on the Configure menu.
Change Ω to 10 rad/s, A to 0.01, and the time to run on the main controls to 10 s. (You
need to hit Enter to get changes to register: the number turns red to warn you.) Notice
that the string wiggles under the external forcing, but the amplitude never gets very large.

Now, using the tension τ , the mass per unit length µ1 (what Elmore & Heald calls λ0),
and a length L (all given under the Configure menu), find the frequencies ωm of the
standing waves. Change the frequency of the forcing frequency Ω to the frequency ω1 of
the fundamental mode, and reduce A to 0.002. How does the amplitude in the fundamental
mode build up? The small graph on the lower left shows the height Y of the center of the
string (our η) as a function of time: it should be oscillating with an increasing amplitude
ηmax ∼ tζ as the resonance builds up. Do the peaks seem to be growing linearly in time
(ζ = 1), or quadratically (ζ = 2), or what?

In your writeup, we’d like to see the frequency that you forced the program to excite the
fundamental, and a brief, qualitative description of the growth of the oscillation peaks in
time.
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(3.4) Pythag: Energy and Power.
Let a pulse be traveling down the string at the velocity of sound η(x, y) = f(x − vt). Use
the fact that this is a traveling wave to derive a formula giving the ratio of the potential
energy density to the kinetic energy density. Restart pythag (or select DEFAULT on the
presets), and verify your formula. (For the writeup, just note the maximum amplitude for
the kinetic and potential energy densities KE and PE.)
Derive a formula relating the power and the total energy density u for a traveling wave.
Verify your formula with pythag.
Be sure to remember: these two formulas only apply to traveling waves!

(3.5) Fourier Transforms
In problem set 1, we defined the complex Fourier series of a function confined to an interval
(0, L). Waves on strings, rods, and in boxes and tanks are all confined to defined regions,
but many waves are unconfined. Fourier transforms are like Fourier series, except that
the range of the function goes from (−∞,∞). The Fourier transform of a function y(x) is
another function ỹ(k):

ỹ(k) =
∫ ∞

−∞
y(x) exp(−ikx) dx (3.5.1)

and you can retrieve the original function back by using the inverse Fourier transform:

y(x) = (1/2π)
∫ ∞

−∞
ỹ(k) exp(ikx) dk (3.5.2).
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2
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Figure 3.5.1 Gaussian Pulse centered at x0 = 0 of width σ = 1.

The famous function
G(x) =

1√
2πσ

exp(−(x − x0)2/2σ2) 3.5.3

is usually called a normal distribution or a normalized Gaussian. It peaks at x0, and as
x− x0 → ±∞ the Gaussian dies rapidly to zero (because of the exponential of minus x2).
In fact, it starts getting small at about |x − x0| = ±σ. Thus the function is a pulse of
width σ centered at x0. It is of fundamental important in probability theory, in quantum
mechanics, and in statistical mechanics (last month of this course). It is also a good
example of a pulse (like the sound you might get from slapping your hand on the table).
Let’s call G0(x) the Gaussian with mean x0=0 and width σ = 1, pictured above.
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(a) Show that the Fourier transform G̃(k) = exp(−ikx0)G̃0(σk), by changing variables in
equation (3.5.1) from x to z = (x−x0)/σ. Notice that you should not need to do any
integrals!

The Gaussian G(x) has some nice properties: the integral (norm)
∫ ∞
−∞ G(x) dx = 1, the

mean
∫ ∞
−∞ xG(x) dx = x0, the variance (or square of the width)

∫ ∞
−∞(x−x0)2G(x) dx = σ2.

Also, the Fourier transform of the standard Gaussian G0(x) of width one and mean zero
G̃0(k) = exp(−k2/2). The derivation for three of these four formulas is a bit tricky, so
treat them as given.

(b) Using the formulas above and your answer for part (a), give the general formula for
the real and imaginary parts of G̃(k). Draw pictures of the answer for σ = 2 and
x0 = 4, going from k = −2.5 to k = 2.5.

The Fourier transform of a Gaussian centered at zero is another Gaussian! It’s not nor-
malized, though: its height is always one at k = 0.
(c) In general, the value of the Fourier transform ỹ(k) at k = 0 gives which basic property

of y, the norm, mean, or variance?
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 4, due Monday Sept. 22
Latest revision: December 18, 2003, 3:15 pm

Experimental Lab I

Standing Waves, Monday evening 9/15 and Tuesday afternoon 9/16, Rock B26 and B30.

Computer Lab

Fourier Lab, Monday evening 9/22 and Tuesday afternoon 9/23, Rock B3 (hidden around
the corner in the basement).

Reading

Elmore & Heald, sections 4.1, 4.7, 12.1, 12.2

Feynman I.47, I.48-1/4, I.50-1/4

Problems

Elmore & Heald, page 41, problems 1.9.2 (Bead on a String). Use Pythag to see that the
pulse indeed does not stay the same shape: (a) set reflectionless boundary conditions on
both sides, (b) force with a pulse on the left, (c) make µ2 = 20, (d) make X12 = 4.99 and
X23 = 5.01, (e) set the graph time step to one and the amplitude A to 0.1.

(4.1) Reflection and Transmission.

A pulse of height AI , width XI , travels on a string of mass density µ1 and is incident on
a string of mass density µ2 = 9µ1. The strings are joined together, and have the same
tension. Which picture correctly describes the string after the pulse has interacted with
the junction between the two strings? The pictures are drawn to scale.
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(4.2) Air in a tube.

L

OpenClosed

A tube of air of length L is closed on the left-hand side and open on the right. Which
pictures represent the pressure change p(x) from atmospheric pressure for the lowest two
resonant frequencies in this tube? (The solid line is the fundamental, the dashed line
represents the second lowest tone.)

(A)

0 L 0.5 L 1 Lx

-1

0

1

p(
x)

Fundamental
Second lowest resonance

(B)

0 0.5 1x

-1

0

1

η(
x)

Fundamental
Second lowest resonance

(C)

0 L 0.5 L 1 Lx
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0

1

p(
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Fundamental
Second lowest resonance

(D)

0 L 0.5 L 1 Lx

-1

-0.5

0

0.5

1
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Fundamental
Second lowest resonance

(E)

0 L 0.5 L 1 Lx
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0

1

p(
x)

Fundamental
Second lowest resonance
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(4.3) Pythag: Reflection and Transmission.

Start up pythag, and choose the PRESET for STEPDOWN. The string comes in two
pieces, whose mass densities µ1 and µ2 can be read off the Configure menu. The thickness
of the lines roughly corresponds to the mass densities. To repeat a run, first Initialize,
then Run.

Notice some qualitative facts. (1) The pulses leaves the simulation without reflection at
the boundaries. I had to carefully match impedences at the boundary to avoid reflections.
(2) Notice that the string is continuous and has a continuous derivative at the junction.
(You can slow the pulse by lowering ”graph time skip” on the Configure menu.) (3) How
do the widths of the reflected and transmitted pulses compare to the incident pulse? How
about their duration in time, passing by a particular place? Why should their durations
agree? (4) Which is largest, the incident, reflected, or transmitted pulse? According to
your transmission formula, should that always be the case if µ2 < µ1? (5) Does the
reflected pulse invert or not? How about the reflected pulse for STEPUP? By taking the
limits where the mass density ratio goes to zero and infinity, argue why this is related to
reflection at fixed and free boundary conditions.

(4.4) Atoms: Dispersion and the 1-D Crystal.

In lecture we derived the equation of motion for the longitudinal displacements un of the
nth atom in a chain of atoms connected by springs,

∂2un

∂t2
= (K/M)[un+1 − 2un + un−1] (4.4.1)

where K is the spring constant and M is the atomic mass. Assume a plane-wave solution

un = sin (kna − ωt) (4.4.2)

where a is the equilibrium distance between atoms.

(a) Dispersion Relation. Plug in the trial solution equation (4.4.2) into equation (4.4.1).
Rewrite un±1 by expanding the sines, sin (k(n ± 1)a − ωt) = sin ((kna − ωt) ± ka) =
sin (kna − ωt) cos (ka)± cos (kna − ωt) sin (ka) and hence write your equation in the form
−ω2 (BLAH) = f(k) (BLAH). Solve for the dispersion relation, the frequency ω(k) =√−f(k) for each wave-vector k in our one-dimensional crystal.

(b) Continuum Limit. What is the speed of sound for our chain at long wavelengths?
To be specific, what is ω(k)/k (the phase velocity) as the wavelength goes to infinity and
hence k → 0? (A Taylor series under the square root might be useful.)

In the regular wave equation, where ω(k) = c k, both the group velocity dω/dk and the
phase velocity ω(k)/k give the speed of sound, independent of k.

(c) Using K/m = a = 1, plot the dispersion relation ω(k) for −π/a < k < π/a. On a
second graph, plot the group velocity and the phase velocity for 0 < k < π/a. Which
velocity is larger, for this dispersion relation?
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(4.5) Decibels. The power difference between sound A and B in dB is 10 log10(PA/PB),
where P is the power (energy per unit area). (Bels are named after Alexander Graham
Bell, the telephone guy; a decibel is a tenth of a Bel.) The threshold of hearing is around
zero decibels (0 dB). The threshold of pain is about 120 dB, and corresponds to a power
of about 1W/m2. From this and your knowledge of air and sound, estimate the amplitude
of the vibration of your eardrum at the threshold of audibility. (The bulk modulus of air
B is about 1.4×105 N/m2; the density of air is about 1.2 kg/m3; the speed of sound in air
is about 340 m/s; a typical sound frequency might be 1000 Hz.) Compare this with other
natural scales of length: which is it closest to, the size of your ear, the width of a hair in
your cochlea, the width of a cell, the width of an atom, ....

(4.6) Fourier Series, Fourier Transforms, and FFTs.
In problem set 1, we introduced the Fourier series for periodic functions of period L,

ỹm = (1/L)
∫ L

0

y(x) exp(−ikmx)dx, (1.2.3)

where km = 2πm/L. The Fourier series, we saw explicitly in problem set 2, can be
resummed to retrieve the original function:

y(x) =
∞∑

m=−∞
ỹm exp(ikmx). (1.2.2)

In problem set 3, we introduced the Fourier transform for functions on the infinite interval

ỹ(k) =
∫ ∞

−∞
y(x) exp(−ikx) dx (3.5.1)

where now k takes on all values. We regain the original function by doing the inverse
Fourier transform.

y(x) = (1/2π)
∫ ∞

−∞
ỹ(k) exp(ikx) dk (3.5.2),

~ y(
k)

kkkkkk 0−1−2−3−4−5
... k0 k k k k1 2 3 k4 5

Figure 4.6, Approximating the integral as a sum. By approximating the integral∫
ỹ(k) exp(−ikx) dk as a sum over the equally spaced points km,

∑
m ỹ(k) exp(−ikmx)∆k,

we can connect the formula for the Fourier transform to the formula for the Fourier series.
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(a) Series → Transform. Let y(x) be a smooth function which is zero outside (0, L). By
what constant do you need to multiply the Fourier series coefficient ỹm in equation
(1.2.3) to get the Fourier transform ỹ(km) in (3.5.1)? Approximating the Fourier
transform integral (3.5.1) as a sum (as shown in Figure 4.6), use the Fourier series
formulas (1.2.2) and (1.2.3) to explain or derive the factor (1/2π) in equation (3.5.2).

As we take L → ∞ the spacing between the points km, 2π/L, gets smaller and smaller,
and the approximation of the integral as a sum gets better and better.

There is a remarkably fast numerical method, called the Fast Fourier transform. It starts
with N equally spaced data points y�, and returns a new set of complex numbers ỹFFT

m :

ỹFFT
m =

N−1∑
�=0

y� exp(−i2πm�/N). (4.6.1)

(b) FFT → Series. We can use the FFT to give an approximation to the Fourier series.
Let y� = y(x�) where x� = �(L/N) = �(∆x). As in part (a), approximate the Fourier
series integral (1.2.3) above as sum over y�, (1/L)

∑N−1
�=0 y(x�) exp(−ikmx�)∆x. For

small positive m, give the constant relating ỹFFT
m to the Fourier series coefficient ỹm.

The Fourier series is defined for both positive and negative m, where the FFT gives
only positive m. Show that ỹFFT

m = ỹFFT
m+N , and then argue how you can use this to

get the Fourier series coefficients for negative m by looking at the FFT near the end
of the list,
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 5, due Monday Sept. 28
Latest revision: December 18, 2003, 3:15 pm

Computer Labs

Fourier Lab I, Monday evening 9/22 and Tuesday afternoon 9/23, Rock B3 (hidden around
the corner in the basement).

Prelim I

Prelim I is scheduled next week, Friday October 3. The content will focus on the homework,
the experimental lab Standing Waves and the two Fourier labs. There will be multiple-
choice questions (no partial credit) and one or perhaps two longer multiple-part essay
questions. Next Monday, instead of a problem set, I will pass out copies of last year’s
Prelim I for you to use while studying.

Reading

Elmore & Heald, sections 5.1-5.3, 5.10, 12.3/5

Feynman, section I.48-5/6, I.49-3/5, I.50-5/6, I.51 1/2, I.52, II.25-10.

Problems

Elmore & Heald, page 142, problem 5.2.3 (squeaky voices with Helium).

(5.1) Deriving the Wave Equation: Symmetries vs. Free Body Diagram

A thin horizontal string of density λ and tension τ is vibrating inside a viscous fluid. It is
subject to a transverse viscous force b ∂η/∂t per unit length so as to oppose the transverse
motion of the string. In addition, it is subject to an external gravitational force.

(a) Free Body Diagram Method. Generalize the derivation of E&H equation (1.1.2)
to incorporate these effects of viscosity and gravity. Make sure to draw the appropriate
free body diagram for the chunk of string with two tension forces, the viscous force, and
the force due to gravity.

Part (a) could have asked you to “Incorporate into the wave equation the leading order
terms breaking time-reversal invariance and invariance under changing the sign of the
order parameter. Give a possible physical origin for each term.” You’ve already solved
this problem in part (a): part (b) asks you to translate the answer into the language of
modern condensed-matter physics:

(b) Symmetry Method. Which term, gravity or friction, breaks time-reversal invariance?
Which term breaks invariance under changing the sign of the order parameter?

1



(5.2) Deriving New Laws.
The evolution of a physical system is described by a field Ξ, obeying a partial differential
equation

∂Ξ/∂t = A ∂Ξ/∂x. (5.2.1)

(a) Symmetries.
Give the letters corresponding to ALL the symmetries that this physical system appears
to have:

(A) Spatial inversion (x → −x).
(B) Time reversal symmetry (t → −t).
(C) Order parameter inversion Ξ → −Ξ).
(D) Homogeneity in space (x → x + ∆).
(E) Time translational invariance (t → t + ∆).
(F) Order parameter shift invariance (Ξ → Ξ + ∆).

(b) Traveling Waves. Show that our equation ∂Ξ/∂t = A ∂Ξ/∂x has a traveling wave
solution. If A > 0, which directions can the waves move?

(5.3) Fourier Series.
Which picture represents the Fourier series associated with the function f(x) = 3 sin(x) +
cos(2x)? (The solid line is the real part, the dashed line is the imaginary part.)

(A)
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(5.4) Sawtooth Wave.
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Triangle Wave and Fourier Decomposition
Traveling to Right

A sound wave generator generates a triangular pressure air wave moving toward the right
down a hollow tube, as shown in the figure above. The triangles repeat forever with
wavelength L. The maximum displacement of the wave is A, the velocity of sound is v,
and the bulk modulus for air is B.

(a) What is the intensity (power per unit area) traveling down the tube?

The figure shows the Fourier series for our wave truncated at n = ±2 and n = ±4.

(b) We now want to decompose this intensity into different frequencies. Give the time
average intensity Iav

n of a single traveling plane wave of wave vector kn and amplitude
an, un(x, t) = an sin (kn(x − vt))? (Leave your answer in terms of an and kn.)

The Fourier series for the displacement of the wave is

u(x) =
∞∑

n=0

an sin(kn(x − vt))

with kn = 2πn/L. The Fourier coefficients are an = 0 for n even, and for n odd are

an = (−1)(n−1)/28A/(π2n2).

(c) Verify explicitly that the sum of the intensities per frequency channel n you calculated
in part (b) equals the total intensity you calculated in part (a). You’ll need the formula
π2/8 = 1 + 1/32 + 1/52 + 1/72 + . . .

This is Feynman’s energy theorem, section I.50-5: the energy of the sum of different Fourier
waves is the sum of the energies of the individual waves. This is why we can talk about
the power spectrum of a wave: you can think of the power at different frequencies as being
independent of one another.
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(5.5) Pythag: Group velocity, phase velocity, and dispersion.

Start up Pythag. Choose Packet forcing on the left-hand side: this yanks on the left
sinusoidally with a frequency Ω = 300 radians per second, with an amplitude given by
a Gaussian pulse of FWHM 0.04 seconds Hit Initialize and Run, and watch the packet
bounce back and forth. As is usual with the wave equation, the pulse propagates without
changing in shape. This is only true, however, so long as the pulse does not change much
on the length scale given by the distance between points δx on the numerical string.

Open the Configure menu. Change Ω to 800 and FWHM to 0.015. To slow down the
pulse, lower graph time skip to one. You should now see a pulse which changes shape as it
moves.

(a) Is the group velocity faster or slower than the phase velocity? This is easiest to see
by looking at the pulse early on, before it stretches out: do the peaks within the wave
of the carrier frequency move forward faster or slower than the pulse as a whole?

After several passes across the window, you should see a broad pulse, which has longer
waves on one side than the other.

(b) Does the leading edge have longer or shorter wavelength than the trailing portion of
the packet? Which wavelengths move faster, the long wavelengths or the short ones?

This is called chirping. Try making a sound that goes up in pitch at the end: what does
it sound like?

(c) Do these two answers agree with what you found for the dispersion relation in problem
set 4?

Now change the number of string pieces (chunks) to 999 (the largest value allowed), and
change the graph time skip back to 20.

(d) Does the dispersion go away when you reduce the spacing δx in this way?
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(5.6) Sine-Gordon Dispersion Relation.

An array of pendula connected by springs, in the continuum limit, obeys the Sine-Gordon
equation

∂2φ/∂t2 = A∂2φ/∂x2 − B sin(φ).

with φ(x) = 0 corresponds to the pendulum at position x along the array pointing down-
ward. What is the dispersion relation ω(k) for small oscillations in this equation?

(A) ω(k) =
(−B ±√

B2 − 4Ak2
)
/2A

(B) ω(k) =
√

Ak2 − B sin(φ)

(C) ω(k) =
√

Ak2 − B

(D) ω(k) =
√

Ak2 + B

(E) ω(k) =
√

Ak2 + B sin(φ)
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(5.7) Group and Phase Velocities.

0 2 4 6 8 10x

-0.2

-0.1

0

0.1

0.2

η(
x,

t=
0)

η(x,t)
e(x)

0 1 2 3

k  (cm
-1

)

0 D

0.5 D

1 D

1.5 D

2 D

ω
  (

ra
d/

se
c)

A wave packet in an unusual optical fiber is traveling to the right. The wave packet has
an envelope of shape e(x) at time t = 0, and has a carrier wave with nodes at x = 0.5cm,
x = 1cm, x = 1.5cm, ... as shown. The dispersion relation for the glass in this fiber is
ω(k) = Dk2, as shown.∗ Which of the following formulas most closely describes η(x, t),
ignoring the slow spreading of the wave packet?

(A) η(x, t) ≈ e(x − 4πDt) sin(2π(x − 2πDt)).

(B) η(x, t) ≈ e(x − 2πDt) sin(2π(x − 1πDt)).

(C) η(x, t) ≈ e(x − 2πDt) sin(2π(x − 2πDt)).

(D) η(x, t) ≈ e(x − 2πDt) sin(2π(x − 4πDt)).

(E) η(x, t) ≈ e(x − 1πDt) sin(2π(x − 2πDt)).

(F) η(x, t) ≈ exp(ikx − ωt).

∗ It’s not useful for this problem, but this is the dispersion relation for the wave equation
∂2η/∂t2 = −D∂4η/∂x4.
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 6, due Wednesday Oct. 15
Latest revision: December 18, 2003, 3:15 pm

Reading

Elmore & Heald, sections 5.5-5.7 (Waves in 3D Fluids)
Feynman, section I.26 (Least Time), I.27 (Geometrical Optics), I.28 (Dipole Radiator),
I.29 (Interference), II.20-4 (Spherical Waves)

Experimental Lab II

Microwaves and Optics, Monday evening 10/6 and Tuesday afternoon 10/7, Rock B26 and
B30.

Problems

(6.1) Optical Fibers and Total Internal Reflection. An optical fiber consists of a
glass core (index of refraction n1) surrounded by a coating (index of refraction n2 < n1).
Suppose a beam of light enters from air obliquely at an angle θ with the fiber axis as shown
in the figure below.

(a) Show that the greatest possible value of θ for which a ray can be propagated down
the fiber without leaking out is given by θ = sin−1(n2

1 − n2
2)

1/2. Assuming that the
glass and coating indices of refraction are 1.55 and 1.50, respectively, calculate θmax.

(b) What would the critical angle be if the outer layer of glass were not there?

1



(6.2) Michelson Interferometer.

d

As one of the mirrors of a Michelson interferometer is moved through a distance d of 0.163
mm, 500 bright fringes move across the field of view. What is the wavelength of the light
illuminating the mirrors of the interferometer?

(6.3) Reflectionless Coatings. A string has three segments, the first of densities µ1 =
0.1kg/m, the second a short segment of density µ2 = 0.05 kg/m, followed by a segment of
density µ3 = 0.025. The string is under tension τ = 160N. Sinusoidal waves of frequency
ω = 300rad/s impinge from the left.

(a) How long should the middle segment be to minimize the reflection?

This is an example of a reflectionless coating. Your glasses may have such a coating,
designed to reduce the reflections of light from their surface. (It’s much more work to
design one that works at all wavelengths. . . )

(b) Check your answer to part (a) with Pythag. The REFJUMP preset should set things
up properly: change X12 or X23 on the Configure menu to change the length of the
middle, red segment. Test to make sure your answer does indeed give less reflection
than longer or shorter segments. (Zooming in on the reflected pulse on the y(t) plots
makes it easy to measure the amplitude to high accuracy.)
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(6.4) Sound Wave Interference.
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Suppose there are two loudspeakers emitting spherical sound waves, a distance d = 6m
apart along the y axis (at x = 0, y = ±3m). The sources emit sound at the same frequency,
and are in phase. Consider the point B at x = 8m, y = 3m, directly in front of one of the
loudspeakers. If the wavelength of sound is two meters, is there constructive or destructive
interference? How about a wavelength of 4m? Check these qualitatively using the program
Huygens, which you downloaded along with Pythag for an earlier assignment. (Put “X
Screen” to 8 m, d to 6 m, and the screen size to something sensible.) Is the intensity
exactly zero for the case of destructive interference?∗ (Zoom in on the graph with the
right mouse button.) Why not? What relative intensity I+3/I−3 of the sources would
produce zero sound level at B for the destructive case, for point sources of sound?

(6.5) Double Thin Slit. A double slit with slit separation d is illuminated by coherent
light of wavelength λ. The lower slit is covered by a piece of glass of thickness t and
refractive index n = 1.3. An interference pattern is observed on a screen a distance
D >> d away. (a) At what angle θ will the principle m = 0 maximum of the interference
pattern be? (You may assume that θ is small.) (b) At what minimum thickness will the
interference pattern show destructive interference at θ = 0?

∗ Huygens simulates a source which is a thin slit, rather than a point source, so the
decay of amplitude with distance is different than the one for the analytical portion of this
problem.
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 7, due Monday Oct. 20
Latest revision: December 18, 2003, 3:15 pm

Reading

Feynman, sections I.30 (Diffraction), II.30 (Crystals), and II.31 (Tensors)

Problems

(7.1) Antenna Array

Binghamton

Ithaca

d

A radio station south of Ithaca and west of
Binghamton transmits with a carrier wave
of wavelength λ. They use three antennas
spaced equally along a north-south direction,
separated by a distance d = 2/3 λ. The an-
tennas are close together compared to the
distance to either city. The radio station
cleverly delays the signal in the antennas, so
as to add a phase shift φ = 2π/3 in the car-
rier wave between neighboring antennas. In
particular, if we number the three antennas
from south to north as {−1, 0, 1}, the radio
signal is given by

A(r0) (exp[i(ωt − kr1 + φ)] + exp[i(ωt − kr0)] + exp[i(ωt − kr−1 − φ)]

What is the ratio of the average intensity Iav of the radio signal in Ithaca, compared to
I0, which one would find with only one antenna transmitting? In Binghamton?

(A) Ithaca: Iav/I0 = 9; Binghamton Iav/I0 = 3.

(B) Ithaca: Iav/I0 = 9; Binghamton Iav/I0 = 1.

(C) Ithaca: Iav/I0 = 9; Binghamton Iav/I0 = 0.

(D) Ithaca: Iav/I0 = 3; Binghamton Iav/I0 = 1.

(E) Ithaca: Iav/I0 = 3; Binghamton Iav/I0 = 0.

1



(7.2) Interference

A coherent laser beam impinges on a slit of width a. An intensity pattern is viewed on a
distant screen: the center has intensity I0 and the peak width (distance between the nearest
minima) is ∆Y . The slit is broadened to 2a. What is the new intensity Idoubled and peak
minimum separation ∆Y ′? You may assume that the angles are small, so sin θ ≈ θ.

(A) I ′ = 4I0, ∆Y ′ = ∆Y/2.

(B) I ′ = 2I0, ∆Y ′ = ∆Y/2.

(C) I ′ = 2I0, ∆Y ′ = ∆Y/4.

(D) I ′ = 4I0, ∆Y ′ = 2∆Y.

(E) I ′ = 2I0, ∆Y ′ = 2∆Y.

(7.3) Diffraction and Fourier Optics.

A glass slide is coated with soot, blocking all light ex-
cept for a thin stripe across the center where the soot
has been rubbed off. A laser beam of wavelength λ is
aimed at the glass: the beam width is large compared
to the slit width. A careful measurement of the light
transmission immediately outside the glass shows that
amplitude of the light has a Gaussian profile: it varies
with x as exp(−2x2/a2), where a is the width (standard
deviation) of the transparent strip and x is the distance
from the center of the strip. Which of the following in-
tensity patterns will be observed on a distant screen?
(You may assume small angles.)
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(7.4) Introduction to Tensors. In the next few weeks, we’ll make heavy use of tensors.
Tensors are a generalization of vectors and matrices: vectors vi are one-index tensors,
matrices Mij are two-index tensors, and we’ll be making use of three and four-index tensors
like cijk� in our discussions of elasticity in solids. Just as for a vector or a matrix, a tensor
cijk� is a multidimensional array of real numbers, one for each choice of i, j, k, and �
ranging from one to three.

(a) How many different real numbers are needed to specify a general four-index tensor?

In this problem, we introduce two particularly useful and important tensors. One is the
Kronecker delta function δij , which is one if i = j and zero if i �= j.

δij = 1 if i = j δij = 0 if i �= j (7.4.1)

The other is the Levi-Civita symbol, or totally antisymmetric tensor, εijk. It is defined by
its value for i = 1, j = 2, k = 3,

ε123 = 1 (7.4.2)

and its antisymmetry property: it changes sign whenever two indices are permuted:

εijk = −εjik = −εikj = −εkji. (7.4.3)

It’s easy to see that εijk gives +1 if {ijk} is an even permutation of {123}, −1 if it is an
odd permutation, and zero if any two indices agree.

(b) Using equations (7.4.2) and (7.4.3), show that (specifically) ε223 = 0; show also that
ε123 = ε231 = ε312 = 1 and ε321 = ε213 = ε132 = −1.

(c) Write out δij as a matrix, with i labeling the row and j the column. What do you
usually call this matrix? Write out εijk as three matrices ε1jk, ε2jk, and ε3jk, with i
labeling the matrix, j the row and k the column. (We do not usually write out tensors
in this way.)

One of the most common things we do to tensors is taking outer products and/or contracting
them. The outer product of two tensors aij and bk�, for example, is a tensor with four
indices given by the product of the two: dijk� = aijbk�. Contraction is done by setting two
indices of a tensor (or an outer product of tensors) equal, and summing over all values of
that repeated index: the new tensor has two fewer indices after contraction.

A familiar examples of a contraction is taking the trace of a matrix: tr(M) =
∑3

i=1 Mii.
Three familiar examples of taking outer products and then contracting are the dot product
of two vectors, v ·w =

∑3
i=1 viwj , applying matrices to vectors (Mv)i =

∑3
j=1 Mijvj , and

multiplying matrices (MN)ik =
∑3

j=1 MijNjk.

You notice that there are a lot of sums
∑3

j=1 in the formulas above. In physics, we often
make use of the Einstein convention, where summation (contraction) over repeated
indices is implied. Hence if we write aiij , the convention implies that we really meant the
one-index tensor resulting from summing over i,

∑3
i=1 aiij .
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(d) Write the trace, dot product, matrix operating on a vector, and matrix multiplication
examples above using the Einstein convention.

(e) Give arguments for the following formulas involving δij and εijk. We use the Einstein
convention.

δii = 3

(Easy.)

εijkδjk = 0

(Consider two kinds of terms: j = k and j �= k.)

εijkεijk = 6

(Show that this is the sum of the squares of all of the elements of the tensor.
How many non-zero elements are there?)

εijkεij� = 2δk�

(Show that the left–hand–side is zero if k �= �.
Then compute it for k = � = 3, and argue from there.)

εijmεk�m = δikδj� − δi�δjk

(Show the left–hand–side is zero except in the two cases
(i = k and j = �) and (i = � and j = k).
Then find the sign for the two cases.)

(f) Write the cross product of two vectors v and w as the outer product contracted twice
with the totally antisymmetric tensor.

(g) (Optional: for the ambitious and inspired.) The determinant of a matrix M is anti-
symmetric under interchange of any two rows or columns, and the determinant of the
identity matrix is one. Argue (without doing messy calculations) that these are also
true of the formula

det M = (1/6) εijkε�mnMi�MjmMkn.
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 8, due Monday Oct. 27
Latest revision: December 18, 2003, 3:15 pm

Reading
Feynman, section I.30 (Diffraction), II.30 (Crystals), II.31 (Tensors), II.38-1/2 (Elasticity),
II.39.1/5 (Strain and Elasticity)
Possibly also useful: Elmore & Heald, sections 3.1-3.3, 7.4

Prelim II
Prelim II is tentatively scheduled for Wednesday November 5, pending discussion about
timing with the class. Prelim II will cover the higher-dimensional wave equations, interfer-
ence and diffraction, tensors, elasticity theory, elastic waves, and electromagnetic waves.
It will potentially include questions from the experimental lab Microwaves and Optics. It
will be a similar format to the last exam.

Problems
(8.1) Diffraction Grating. A 10 cm wide diffraction grating with 10000 slits is used to
measure the wavelengths emitted by hot hydrogen gas. (a) At what angles θ in the first
order spectrum do we expect to find the two violet lines of wavelengths 434 and 410nm?
(b) Same question but for second order.

(8.2) Thick Slits and Windows. Start up Huygens. Set the “Number of Slits” to one
and the width a of the slit to 5 m. Notice the single-slit diffraction pattern on the right.
Notice that the waves on the left look much like you’d expect for light coming in a window:
light traveling along straight lines. How do we reconcile these two pictures?
Bring the screen in closer: try “X Screen” at 10 and 1 meter. (If you get too close, you’ll
begin to see my numerical method for generating the slit.) Now vary the wavelength. How
much farther does the intensity look “window-like” at λ = 0.35 than for λ = 0.7? Finally,
vary the slit width a. With λ = 0.7, what distance to the screen for a = 2.5 looks the
same shape as 10m for a = 5?
Explain why you can hear around corners, but you can’t see around corners.

(8.3) Double Thick Slit. Start up Huygens. Set d to 8m, and a to 2m. You should see
a complicated interference pattern. Now set the number of slits to one. Is the single slit
pattern the envelope of the double thick-slit pattern? Set the number of slits back to two,
and set a to zero. Is the thin-slit pattern like the carrier wave?
Show that the intensity for a double-slit with distance d between the centers and width
a for each slit is the product of the single-slit diffraction pattern of width a and the
double thin-slit diffraction pattern. (Hint: Remember that the amplitude of the wave at
the screen is proportional to the Fourier transform of the slit-opening function E(θ) =
Re

(
Aeiωtf̃(k sin θ)

)
. You can find how the amplitude from the upper slit changes as it is

translated upward by d/2 by using the properties of Fourier transforms under translation.)
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(8.4) Interference A coherent laser beam impinges on a slit of width a. An intensity
pattern is viewed on a distant screen: the center has intensity I0 and the peak width
(distance between the nearest minima) is ∆Y . The slit is broadened to 2a. What is the
new intensity Idoubled and peak minimum separation ∆Y ′? You may assume that the
angles are small, so sin θ ≈ θ.

(A) I ′ = 4I0, ∆Y ′ = ∆Y/2.
(B) I ′ = 2I0, ∆Y ′ = ∆Y/2.
(C) I ′ = 2I0, ∆Y ′ = ∆Y/4.
(D) I ′ = 4I0, ∆Y ′ = 2∆Y.
(E) I ′ = 2I0, ∆Y ′ = 2∆Y.

(8.5) Traction-free boundary condition.

z

y

x

An isotropic elastic medium is strained as shown above: it is compressed and stretched
along different axes. The stress tensor is

σij =




a −a 0
−a a 0

0 0 −2a


 .

The medium has a flat free surface perpendicular to the axis n̂. A free surface is a surface
on which there is no traction, or forces, applied: for example, a surface exposed to vacuum
(or approximately, to air). Knowing the stress tensor above, in which direction n̂ could
the surface normal point?
(A) n̂ = (1, 0, 0)
(B) n̂ = (0, 1, 0)
(C) n̂ = (0, 0, 1)
(D) n̂ = (1/

√
2, 1/

√
2, 0)

(E) n̂ = (1/
√

2,−1/
√

2, 0)
(F) n̂ = (1/

√
2, 1/

√
2, 1/

√
2)

Draw n̂ and the strained cube, and convince yourself that the surface perpendicular to n̂
would be free.
Related formulæ: Fi/A = σijn̂j , Fi = ∂jσij , σij = cijklεkl = 2µεij + λεkkδij
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(8.6) The Power of Tensors. Remember from last week the definitions of the two most
important tensors: the Kronecker delta function δij = 1 if i = j, δij = 0 if i �= j, and
the totally antisymmetric tensor εijk = −εjik = −εikj = −εkji with ε123 = 1. Remember
the identities that you proved: δii = 3, εijkδjk = 0, εijkεijk = 6, εijkεij� = 2δk�, and
εijmεk�m = δikδj� − δi�δjk. Notice that one can conveniently use tensor notation to write
the gradient (∇ψ)i = ∂iψ, divergence ∇ · a = ∂iai, and curl (∇× a)i = εijk∂jak.

Use these formulas to prove the following vector identities (listed in the front of Jackson,
Classical Electrodynamics):

a · (b× c) = b · (c × a) = c · (a × b)

a × (b× c) = (a · c)b− (a · b)c

(a× b) · (c × d) = (a · c)(b · d) − (a · d)(b · c)

∇×∇ψ = 0

∇ · (∇× a) = 0

∇× (∇× a) = ∇(∇ · a) −∇2a

∇ · (ψa) = a · ∇ψ + ψ∇ · a
∇× (ψa) = ∇ψ × a + ψ∇× a

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b × (∇× a)

∇ · (a × b) = b · (∇× a) − a · (∇× b)

∇× (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b

HInt: You’ll need to use the fact that the second derivative doesn’t depend upon the order
of variables (∂i∂jf = ∂j∂if) and the product rule (∂i(f g) = (∂if)g + f(∂ig).
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 9, due Monday Nov. 3
Latest revision: December 18, 2003, 3:14 pm

Reading
Feynman II.39.1/5 (Strain and Elasticity), I.51.3/4 (Waves in Solids and Surface Waves),
II.39-3/4 (Elastic Motion), II.19 (The Principle of Least Action: not for credit), II.20
(Solutions of Maxwell’s Equations in Free Space), and II.32 (Refractive Index of Dense
Materials).
Possibly also useful: Elmore & Heald, sections 7.4, 7.5, 7.6, 8.1-8.5; don’t worry about the
obsolete notation of dyadics and stuff.

Prelim II
Prelim II is tentatively scheduled for Wednesday November 5, pending discussion about
timing with the class. Prelim II will cover the higher-dimensional wave equations, interfer-
ence and diffraction, tensors, elasticity theory, elastic waves, and electromagnetic waves.
It will potentially include questions from the experimental lab Microwaves and Optics. It
will be a similar format to the last exam.

Experimental Lab III
Interference and Diffraction, Monday evening 11/10 and Tuesday afternoon 11/11, Rock
B26 and B30.

Problems

(9.1) Strain fields at large rotations. Show for a rotation about the z axis by an angle
θ that the gradient of the displacement field ∂jui is

�∇�u =


 cos(θ) − 1 sin(θ) 0

− sin(θ) cos(θ) − 1 0
0 0 0


 .

Calculate the strain field εapprox
ij = (1/2)(∂iuj + ∂jui) and show that it is not small. How

large a rotation would give a 1% strain component to the strain tensor (and hence lead
to plastic deformation)? Now calculate the true strain matrix including the “geometric
nonlinearity” εij = (1/2)(∂iuj + ∂jui + ∂iuk∂juk) and show that it is zero.

(9.2) Elastic Moduli.

In an isotropic material, only two elastic moduli are independent: all others can be
written in terms of them. The tensor relation between strain and stress is most nicely
written in terms of the two Lamé elastic constants λ and µ:

σij = 2µεij + λεkkδij . (8.6.1)
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The constant µ is just the shear modulus (Feynman eqn. II.38.14); the constant λ =
B − 2µ/3, where B is the bulk modulus (Feynman’s K, eqn. II.38.9).

(a) Show that bulk compression has three non-zero components: εxx = εyy = εzz =
∆V/(3V ). Knowing that the stress σxx = B∆V/V , check the formula for the bulk
modulus given above.

If we put a force per unit area σxx = F/A stretching our material in the x-direction, and
we don’t constrain the sides (so σij = 0 except along x, i = j = 1), the material will stretch
by an amount ∆L/L = (1/Y )F/A, where Y is the Young’s modulus. It also compresses
in the y and z directions by Poisson’s ratio∗ ν times the extension along the x direction,
so the width and height change by ∆W/W = ∆H/H = −ν∆L/L.

(b) Write the stress tensor σij and the strain tensor εkl for this problem, as 3×3 matrices.

(c) Use your answers to part (b) and the equation (8.6.1) relating stress and strain for
isotropic materials, solve for Young’s modulus Y and Poisson’s ratio ν in terms of λ
and µ.

(9.3) Elastic Waves.

A small crack starts on the inside of a concrete dam, gener-
ating acoustic waves of all polarizations with wavelengths
much shorter than the thickness D of the dam. An acous-
tical detector is positioned outside the dam directly oppo-
site to the crack. The concrete can be assumed to be an
isotropic medium with positive elastic constants λ and µ.
What signal is expected in the acoustical detector?

(A) A transverse sound pulse, followed by a longitudinal sound pulse.
(B) A longitudinal sound pulse, followed by a transverse sound pulse.
(C) A transverse sound pulse only: sound is a transverse wave.
(D) A longitudinal sound pulse only: the transverse sound component will travel along

the length and width of the dam, not across the thickness.
(E) A sound pulse after a time t = D/

√
Y/ρ, where Y is the Young’s modulus of concrete.

Related formulæ: ρ∂2ui/∂t2 = (λ + µ)∂i∂juj + µ∂j∂jui. With ∇ · uT = 0, cT =
√

µ/ρ;
with ∇× uL = 0, cL =

√
(λ + 2µ)/ρ

∗ We use ν for Poisson’s ratio, as the engineers do, reserving σ for the stress tensor.
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(9.4) Tensor Notation Review. Suppose B = ∇×A. Which of the following are correct
formulas for B2? (For example, the energy contained in a magnetic field is B2/8π.)

(A) εijk∂jAkεi�m∂�Am.
(B) (δj�δkm − δjmδk�)(∂jAk)(∂�Am).
(C) (∂jAk)2 − (∂jAk∂kAj).
(D) All of the above.
(E) None of the above.

(9.5) Elastic Traveling Wave. An isotropic elastic medium with density ρ and moduli λ
and µ fills the half space x > 0. The boundary of this medium is wiggled with displacement
field

u(0, y, z) = (f(t), g(t), h(t)) ,

generating an elastic wave travelling to the right (positive x direction).
What is the displacement u(x, y, z, t) for x > 0?

(A) u(x, y, z, t) = (0, g(t− x/c), h(g − x/c)).
(B) u(x, y, z, t) = (f(t − x/

√
(λ + 2µ)/ρ), g(t− x/

√
µ/ρ), h(t − x/

√
µ/ρ)).

(C) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− x/
√

(λ + 2µ)/ρ), h(t − x/
√

(λ + 2µ)/ρ)).

(D) u(x, y, z, t) = (f(x − √
µ/ρ t), g(x− √

(λ + 2µ)/ρ t), h(x − √
(λ + 2µ)/ρ t)).

(E) u(x, y, z, t) = (f(t − x/
√

µ/ρ), g(t− y/
√

(λ + 2µ)/ρ), h(t − z/
√

(λ + 2µ)/ρ)).

(9.6) Waves on a Thin Wire. A plane wave of wave vector k passes along the x̂ direction
through a thin wire of radius W . The wire width W is thin compared to the wavelength,
so kW << 1. The material making up the wire is isotropic, with elastic moduli λ and µ.
The wave at t = 0 is approximately given by the real part of

u = Aei(kx−ωt)

(
1 − ν

k2(y2 + z2)
2

,−ikyν,−ikzν

)

where we use the engineering notation ν for Poisson’s ratio ν = λ/2(µ+λ).∗ This formula
is correct up to terms of order k3W 3. The wave is primarily longitudinal, for small k (the
y and z components of u are smaller by a factor of kW than the x component). The
wave is basically stretching and compressing the wire along the x̂ direction, with a small
correction.

(a) Ignoring for the moment the term proportional to k2, show that the y and z compo-
nents are just what one would expect from Poisson’s ratio applied to the amount the
wire is stretched along the x direction.

The k2 term took me a long time to figure out the first year I taught this. I don’t have a
simple explanation for it, but without keeping it you get the wrong sound velocity even as
k → 0.

∗ Feynman and E&H use σ for Poisson’s ratio, which we use for the stress tensor.
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(a) Compute the strain tensor ε(x, y, z, t) for this displacement field, ignoring the geomet-
ric nonlinearity. Write it out as a 3×3 matrix.

(b) The wire is isotropic, with elastic moduli λ and µ. Write the stress tensor for the wire
as a 3×3 matrix.

(c) (Not for credit: gluttons for punishment only.) Check that this displacement field
satisfies Newton’s law

ρ∂2ui/∂t2 = ∂jσij

and has zero stress at the surface of the wire up to terms of order k3 and kω2, with
ω = ck and c =

√
Y/ρ.

Thus longitudinal sound down a thin wire travels with a speed of sound set by Young’s
modulus.
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 10, due Monday Nov. 17
Latest revision: December 18, 2003, 3:14 pm

Reading

Feynman, I.1 Atoms in Motion, I.6 Probability, & I.43 Diffusion

Schroeder, chapter 1. Browse section 6.4 (Maxwell distribution of velocities).

Problems

Schroeder,
(1.12) How Dilute is Air? Assume small molecules are around 0.4 nm in diameter.

Remember PV = NkBT with kB = 1.381 × 10−23, Patm ∼ 1.013 × 105Pa, and
T ∼ 300K.

(1.18) Molecular Velocities. Remember the kinetic energy (1/2)mv2 of molecules equals
(3/2)kBT . The mass of a N2 molecule is m = 2mNi ∼ 28mp ∼ (28gm/NA) ×
1kg/1000gm = 4.65 × 10−26kg.

(1.33) P-V diagram. Make a table with rows A, B, C, and “Whole Cycle” and columns
“Work done on gas”, “Change in Energy content of gas”, and “Heat added to gas”.
Relevant formulas: Work on gas = -

∫
P dV ; energy in gas U = Nf(kBT/2) =

(Nf/2)PV .
(1.60) Frying Pan. Do this three ways. (a) Guess the answer from your own experience.

If you’ve always used aluminum pans, consult a friend.

(b) Use an argument analogous to Schroeder’s equation (1.71) to get a rough
answer. Note: For iron, the specific heat cp = 450J/kg · C, the density ρ =
7900kg/m3, and the thermal conductivity kt = 80W/m·C. You need to transport
heat cpρV ∆T across an area A = V/∆x. How much heat will flow across that
area per unit time, if the temperature gradient is roughly assumed to be ∆T/∆x?
How long δt will it take to transport the amount needed to heat up the whole
handle?

(c) Roughly model the problem as the time needed for a pulse of heat at x = 0
on an infinite rod to spread out a distance equal to the length of the handle, and
use the Greens function for the heat diffusion equation (problems 10.3 and 10.4
below). How long until the pulse spreads out a root-mean square distance σ(t)
equal to the length of the handle?

(10.1) Random walks in Grade Space. Let’s make a simple model of the prelim grade
distribution. Let’s imagine a multiple-choice test of ten problems of ten points each. Each
problem is identically difficult, and the mean is 70. How much of the point spread on
the exam is just luck, and how much reflects the differences in skill and knowledge of the
people taking the exam? To test this, let’s imagine that all students are identical, and that
each question is answered at random with a probability 0.7 of getting it right. What is the
expected mean and standard deviation for the exam? (Work it out for one question, and

1



then use our theorems for a random walk with ten steps.) A typical exam with a mean
of 70 might have a standard deviation of about 15. What physical interpretation do you
make of the ratio of the random standard deviation and the observed one?

(10.2) Probability Distributions. I’m assuming you’re familiar with probabilities for
discrete events (like coin flips and card games), but you probably haven’t worked much
with probability distributions for continuous variables (like human heights and atomic
velocities). The three probability distributions most commonly encountered in physics
are: (i) Uniform: ρuniform(x) = 1 for 0 ≤ x < 1, ρ(x) = 0 otherwise; produced by random
number generators on computers. (ii) Exponential: ρexponential(t) = e−t/τ/τ for t ≥ 0,
familiar from radioactive decay and used in the collision theory of gases. (iii) Gaussian:
ρgaussian(v) = e−v2/2σ2

/(
√

2πσ), describing the probability distribution of velocities in a
gas, the distribution of positions at long times in random walks, the sums of random
variables, and the solution to the diffusion equation.

(a) Likelihoods. What is the probability that a random number uniform on [0, 1) will
happen to lie between x = 0.7 and x = 0.75? That the waiting time for a radioactive
decay of a nucleus will be more than twice the exponential decay time τ? That your
score on an exam with Gaussian distribution of scores will be greater than 2σ above
the mean? (Note:

∫∞
2

(1/
√

2π) exp(−v2/2) dv = (1 − erf(
√

2))/2 ∼ 0.023.)

(b) Normalization, Mean, and Standard Deviation. Show that these probability
distributions are normalized:

∫
ρ(x)dx = 1. What is the mean x0 of each distribution?

The standard deviation
√∫

(x − x0)2ρ(x)dx? (Hint:
∫∞
−∞(1/

√
2π) exp(−x2/2) dx =∫∞

−∞ x2(1/
√

2π) exp(−x2/2) dx = 1).

(c) Sums of variables. Draw a graph of the probability distribution of the sum x+y of
two random variables drawn from a uniform distribution on [0, 1). Argue in general
that the sum z = x + y of random variables with distributions ρ1(x) and ρ2(y) will
have a distribution given by the convolution ρ(z) =

∫
ρ1(x)ρ2(z − x) dx.

(d) Multidimensional probability distributions. In statistical mechanics, we of-
ten discuss probability distributions for many variables at once (for example, all the
components of all the velocities of all the atoms in a box). Let’s consider just the
probability distribution of one molecule’s velocities. If vx, vy, and vz of a molecule are
all distributed with a Gaussian distribution with σ =

√
kT/M (Feynman’s equation

40.9, next week), then we describe the combined probability distribution as a function
of three variables as the product of the three Gaussians:

ρ(vx, vy, vz) =1/(2π(kT/M))3/2 exp(−mv2/2kT )

=

(√
M

2πkT
e

−Mv2
x

2kT

)(√
M

2πkT
e

−Mv2
y

2kT

)(√
M

2πkT
e

−Mv2
z

2kT

)
.

Show, using your answer for the standard deviation of the Gaussian in part (b), that
the mean kinetic energy is kT/2 per dimension. Show that the probability that the
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speed is v = |v| is given by a Maxwellian distribution

ρMaxwell(v) =
√

2/π(v2/σ3) exp(−v2/2σ2).

(Hint: What is the probability that |v| is between vr and vr +∆r, for small ∆r? The
area of a sphere of radius R is 4πR2.)

(e) Assuming the probability distribution for the z component of velocity given in part (d),

ρ(vz) =
(√

M
2πkT

e
−Mv2

z
2kT

)
, give the probability density that an N2 molecule will have a

vertical component of the velocity equal to the escape velocity from the Earth (about
10 km/sec, if I remember right). Do we need to worry about losing our atmosphere?
(Hint: this is closely related to Schroeder’s problem 1.18.) Optional: Try the same
calculation for H2, where you’ll find a substantial leakage. You’ll want to know that
there are 3 × 1016 seconds in a billion years, and molecules collide (and scramble
their velocities) many times per second. That’s why Jupiter has hydrogen gas in its
atmosphere, and Earth does not.

(10.3) Thermal Diffusion. The rate of energy flow in a material with thermal conduc-
tivity kt and a temperature field T (x, y, z, t) = T (r, t) is J = −kt∇T (see Feynman eq.
43.41). Energy is locally conserved, so the energy density E satisfies ∂E/∂t = −∇ · J.

(a) If the material has constant specific heat cp and density ρ, so E = cpρT , show that
the temperature T satisfies the diffusion equation ∂T/∂t = kt

cpρ∇2T . (See Schroeder,
problem 1.62).

(b) By putting our material in a cavity with microwave standing waves, we heat it with
a periodic modulation T = sin(kx) at t = 0, at which time the microwaves are turned
off. Show that amplitude of the temperature modulation decays exponentially in time.
How does the amplitude decay rate depend on wavelength λ = 2π/k?

(10.4) Heat Diffusion Spot. The diffusion equation for the heat density in a two-
dimensional sheet is

∂q/∂t = K(∂2q/∂x2 + ∂2q/∂y2).

(a) Diffusion in Two Dimensions. Show that if f(x, t) satisfies the diffusion equation
in one dimension, then f(x, t)f(y, t) solves the diffusion equation in two dimensions.
(Related formulæ: Product Rule, ∂fg/∂z = ∂f/∂z g + f ∂g/∂z.)

(b) The heat spot. A screen of thermal diffusion constant K is heated at x = y = 0 and
t = 0 by a thin laser beam pulse. The total heat deposited is Q. Use part (A) and the
Greens function for the one dimensional diffusion equation to derive the equation for
q(x, y, t), the heat density after a time t. What is the root-mean-square radius r(t) =√〈x2 + y2〉 for this spot? (Related formulæ: ∂ρ/∂t = D∂2ρ/∂x2; If ρ(x, 0) = δ(x),
ρ(x, t) = G(x, t) = 1√

4πDt
e−x2/4Dt and 〈x2〉 = 2Dt; 〈f(z)〉 =

∫
f(z)ρ(z) dDz.)
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 11, due Monday Nov. 24
Latest revision: December 18, 2003, 3:14 pm

Reading

Feynman, I.39 The Kinetic Theory of Gases, I.40 Principles of Statistical Mechanics, I.41
The Brownian Movement, & I.42 Applications of Kinetic Theory.

Schroeder, “Very Large Numbers” subsection of section 2.4, 2.5 (Ideal Gas) & 3.1 (Tem-
perature).

Web reading

Introduction to the Cosmic Microwave Background Radiation:
http://background.uchicago.edu/∼whu/beginners/introduction.html
http://background.uchicago.edu/∼whu/intermediate/intermediate.html,
especially the parts Acoustic Oscillations, Angular Peaks, and First Peak.

Problems

Schroeder,
(3.2) Zeroth law.
(3.3) Entropy graphs.

(11.1) Entropy and Hard Spheres.

r

We can improve on the realism of the ideal gas by giving the atoms a small radius. If
we make the potential energy infinite inside this radius (“hard spheres”), the potential
energy is simple (zero unless the spheres overlap, which is forbidden). Let’s do this in two
dimensions.

A two dimensional L × L box contains an ideal gas of N hard disks of radius r � L (left
figure). The disks are dilute: the summed area Nπr2 � L2. Since the disks cannot be
within r of the edges of the box, let A be the effective volume allowed for the first disk in
the box: A = (L − 2r)2.
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(a) Configuration Space Volume for Hard Disks. The area allowed for the second
disk is A−π(2r)2 (right figure), ignoring the small correction when the excluded region
around the first disk overlaps the excluded region near the walls of the box. The area
allowed for the nth disk is A−(n−1)π(2r)2, ignoring corrections for the overlaps of the
excluded regions. Let configuration space X be the 2N dimensional space of positions
x(1), x(2), . . .x(N). Write an expression for the volume ΩX of allowed zero-energy
configurations of hard disks, in the configuration space X, ignoring the overlapping
excluded regions. (Related formulæ: For a 3D ideal gas, ΩP = (π′s)(2mE)(3N−1)/2,
ΩX = V N/N !.)

(b) Statistical Mechanical Entropy for Hard Disks. It’s now easy to write the
configurational entropy, SX for the hard disks of part (a) as a sum over n. Use
the “Math truth” below to find a formula for the entropy that does not involve a
sum over n, accurate to first order in the area of the disks πr2. (Related formulæ:
S = kB ln(Ω); Simpson’s Rule: n! ≈ (n/e)n

√
2πn; Math Truth: To first order in

ε,
∑N

n=1 log (A − (n − 1)ε) = N log (A − (N − 1)ε/2).)

(c) Pressure for Hard Disks. Assume the hard-disk configurational entropy is SX =
NkB log(A − Nb) for some area b, representing the effective excluded area due to
the other disks. (Your answer to (b) won’t quite have this form, but it’s a good
approximation, up to an overall N -dependent constant.) Just as for the ideal gas,
the internal energy U is purely kinetic, and the kinetic energy and momentum-space
entropy depend only on temperature and not on volume. So, if we isothermally expand
this hard-disk gas from initial area A1 to A2, the internal energy doesn’t change:
∆U = Q + W = 0, so the heat Q added to the gas equals −W , the work done by
the gas expanding against the external pressure P . By differentiating with respect to
A2, find the pressure for the hard-sphere gas. (Hint: for b = 0 it should reduce to the
ideal gas law.) (Related formulæ: W = − ∫ A2

A1
PdA and ∆S = Q/T (Thermodynamic

Entropy). For a 3D ideal gas, PV = NkBT and U = 3/2 NkBT.)

(11.2) Waves and the Birth of the Universe. (Large thanks to Ira Wasserman: errors
are of course my own.)
Our universe started very hot and dense, in what we call the Big Bang. This auspicious
starting point is what sets our arrow of time.

Because the universe is expanding, the light emitted back then has redshifted (due to the
Doppler effect), so the immensely hot and bright origin of the universe now resides in a
microwave background radiation that you’d get from a black body at a temperature of 3
K. We’ve learned a lot about our universe recently by carefully measuring the differences
between the temperatures of this radiation as we look in different directions in the night
sky.

Figure (11.2.1) shows these tiny fluctuations in temperature.∗ The fluctuations in temper-
ature represent noisy thermal waves in the early universe.

∗ Actually, it shows these fluctuations after a dipole term has been subtracted out.
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(11.2.1) Microwave background radiation map. Variation in temperature of the mi-
crowave background radiation, after the constant term and the dipole term are subtracted
out, from COBE, the Cosmic Microwave Background Explorer. The fluctuations are about
one part in 100,000. The bright stripe at the equator is our galaxy.

Because it was still very hot, all the hydrogen in the universe was still ionized. Light doesn’t
travel very far in ionized gases (it accellerates the charges and scatters from them): the
light and matter remained in equilibrium with one another until the universe was around
300,000 years old, when it got cold enough for the electrons and protons to combine into
hydrogen.

Before 300,000 years, the combined light-and-matter density satisfied a wave equation:

(1 + R)∂2Θ/∂t2 = (c2/3)∇2Θ, (1)

where c is the speed of light in vacuum, Θ is the temperature fluctuation ∆T/T , t is
“conformal” time (treat it as regular time), and R is the contribution of matter to the
density. Θ can be viewed also as the energy density fluctuations ∆e/e where e = U/V is
the energy density: denser regions are hotter. After recombination, the light was able to
travel directly (albeit red-shifted) to our cameras. So, the microwave background radiation
is giving us a snapshot of the temperature fluctuations of the universe at age 300,000 years.

(a) What is the speed of sound in this gas?

Let’s derive equation (1).

(b) The dominant contribution to the pressure of this combined light-and-matter mixture
is due to the light pressure. Feynman (section 39.3) shows that the photon gases
satisfy PV 4/3 = C, where C is some constant. (Photons are quantized light particles:
you’ll learn about them more in Modern Physics.) The bulk modulus B is defined by

The dipole comes from the Doppler effect of our motion. Einstein’s theory states that all
motion is relative: the laws of physics don’t depend upon how fast the Sun is moving with
respect to the distant galaxies. But that doesn’t mean that the distant galaxies (or, even
better, the glow from the Big Bang) doesn’t have a particular velocity! We can measure
our velocity with respect to the universe by using this dipole.
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(11.2.2) Wave vector dependence of microwave radiation pattern. Variation in
temperature of the microwave background radiation, decomposed into spherical harmonics.
Spherical harmonics are like a Fourier transform, but for angles: you can think of � for the
multipole as roughly corresponding to wavenumber k of the corresponding temperature
fluctuation in the universe when it became transparent to photons (at recombination)
(From Wayne Hu’s Web site, above).

∆P = −B∆V/V . Show that the bulk modulus is 4P/3. Feynman also shows that
PV = U/3. Let P0 be the average light pressure, U0 be the average energy in the
light in an initial volume V0. Show (trivially) that B = (4/9)U0/V0 where U0/V0 is
the average photon energy density.

(c) The total mass density for the wave equation ρ in the early universe has three im-
portant contributions. First, there is the regular mass of particles (mostly baryons)
Mbaryon/V0. Then there is the energy density of the photons divided by c2 (remember
E = mc2?), U0/(V0c

2). Finally, there is a contribution due to the pressure P0/c2

(this is really a component of a stress-energy tensor...) Show that the total density is
ρ = Mbaryon/V0 + 4U0/(3V0c

2).

(d) Derive equation (1) above from ρ∂2P/∂t2 = B∇2P. What is the formula for R?

A theory called “inflation” predicts that at very early times the universe was left in a state
which we can think of as being uniform in temperature and density, but with a random
velocity field. Let’s derive what the density field Θ(x) should look like at time t = 300, 000
years.

(e) Consider first an initial standing-wave perturbation Θ(x, t) = Θ̃k sin(k · x) sin(ωkt).
(Of course the universe started with a superposition of many such standing waves
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with different k.) What is ωk? The energy density fluctuation is zero at t = 0, as
inflation predicts. At what times will this wave have maximum fluctuations? Which
values of k = |k| will have largest fluctuations at t = 300, 000 years? Show that odd
multiples of the first peak are maxima, while even multiples are minima. Assuming
for simplicity that R = 0 (photon-dominated mass density), give the wavelength of
the first peak, in light years.

Our picture of the background radiation (first above) is a cross section of the original
radiation at a sphere given by the 10 billion years since recombination (modulo corrections
due to the age of the universe). Since the data is on a sphere, they need to decompose
our data into spherical harmonics: the constant � in the wave-vector figure (II.2.2) roughly
corresponds to wave number k.

(f) Is twice the � value of the first maximum in figure (11.2.2) a maximum or a minimum?
Does that agree with your conclusion for part (e)? What about three times the first
maximum? (The full theory includes other effects which shift the peak positions.)
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Physics 218: Waves and Thermodynamics
Fall 2003, James P. Sethna

Homework 12, due Wednesday Dec. 3
Latest revision: December 18, 2003, 3:14 pm

Reading

Feynman, I.44 Laws of Thermodynamics, I.45 Illustrations of Thermodynamics, & I.46
Ratchet and Pawl

Schroeder, 2.6 (Entropy), 3.1 (Temperature), & 4.1 (Heat Engines. Browse the rest of
chapter 4 (Engines and Refrigerators).

For further reading (much more advanced)

Freeman J. Dyson, “Time without end: Physics and biology in an open universe”, Reviews
of Modern Physics 51, 447 (1979). (Download from prola.aps.org).

Problems

Schroeder,
(3.10) Entropy and Ice Cubes. The latent heat of ice is 80 cal/g, and the specific heat

of water is cp = 1cal/(gm · K); one calorie is 4.186 J.
(3.16) Entropy and bits.

(12.1) Life and the Heat Death of the Universe.

Freeman Dyson discusses how living things might evolve to cope with the cooling and
dimming we expect during the heat death of the universe.

Dyson models an intelligent being as a heat engine that generates a fixed entropy ∆S
per thought. (This correspondence of information with entropy is a standard idea from
computer science.)

(a) Energy needed per thought. Assume that the being draws heat Q from a hot
reservoir at T1 and radiates it away to a cold reservoir at T2. What is the minimum
energy Q needed per thought, in terms of ∆S and T2? You may take T1 very large.
(Related formulæ: For Carnot engine, ∆S = Q2/T2−Q1/T1 = 0; First Law: Q1−Q2 =
W (energy is conserved).)

(b) Time needed per thought to radiate energy. Dyson shows, using theory not
important here, that the power radiated by our intelligent–being–as–heat–engine is
no larger than CT 3

2 , a constant times the cube of the cold temperature.∗ Write an
expression for the maximum rate of thoughts per unit time dH/dt (the inverse of the
time ∆t per thought), in terms of ∆S, C, and T2.

∗ The constant scales with the number of electrons in the being, so we can think of our
answer ∆t as the time per thought per mole of electrons.
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(c) Number of thoughts for an ecologically efficient being. Our universe is ex-
panding: the radius R grows roughly linearly in time t. The microwave background
radiation has a characteristic temperature Θ(t) ∼ R−1 which is getting lower as the
universe expands: this red-shift is due to the Doppler effect. An ecologically efficient
being would naturally try to use as little heat as possible, and so wants to choose T2

as small as possible. It cannot radiate heat at a temperature below T2 = Θ(t) = A/t.
How many thoughts H can an ecologically efficient being have between now and time
infinity, in terms of ∆S, C, A, and the current time t0?

(d) Time without end: Greedy beings. Dyson would like his beings to be able to
think an infinite number of thoughts before the universe ends, but consume a finite
amount of energy. He proposes that his beings need to be profligate in order to get
their thoughts in before the world ends: he proposes that they radiate at a temperature
T2(t) ∼ t−3/8 which falls with time, but not as fast as Θ(t) ∼ t−1. Show that with
Dyson’s cooling schedule, the total number of thoughts H is infinite, but the total
energy consumed U is finite.

Figure (12.2.1) Cartoon of a motor protein, from Jülicher, Ajdari, and Prost, Rev. Mod.
Phys. 69, 1269 (1997). As it carries some cargo along the way (or builds an RNA or
protein, . . . ) it moves against an external force fext and consumes r ATP molecules, which
are hydrolized to ADP and phosphate (P).

(12.2) Ratchet and Molecular Motors.
Feynman’s ratchet and pawl discussion obviously isn’t so relevant to machines you can
make in your basement shop. The thermal fluctuations which turn the wheel to lift the
flea are too small to be noticable on human length and time scales (you need to look in
a microscope to see Brownian motion). On the other hand, his discussion turns out to be
surprisingly close to how real cells move things around. Physics professor Michelle Wang
studies these molecular motors in the basement of Clark Hall.

Inside your cells, there are several different molecular motors, which move and pull and
copy (figure 12.2.1). There are molecular motors which contract your muscles, there are
motors which copy your DNA into RNA and copy your RNA into protein, there are motors
which transport biomolecules around in the cell. All of these motors share some common
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Figure (12.2.2) Cartoon of Professor Wang’s early laser tweezer experiment, (Yin, Wang,
Svoboda, Landick, Block, and Gelles, Science 270, 1653 (1995)). (A) The laser beam is
focused at a point (the “laser trap”); the polystyrene bead is pulled (from dielectric effects)
into the intense part of the light beam. The “track” is a DNA molecule attached to the
bead, the motor is an RNA polymerase molecule, the “cargo” is the glass cover slip to
which the motor is attached. (B) As the motor (RNA polymerase) copies DNA onto RNA,
it pulls the DNA “track” toward itself, dragging the bead out of the trap, generating a
force resisting the motion. (C) A mechanical equivalent, showing the laser trap as a spring
and the DNA (which can stretch) as a second spring.

features: (1) they move along some linear track (microtubule, DNA, ...), hopping forward
in discrete jumps between low-energy positions, (2) they consume energy (burning ATP
or NTP) as they move, generating an effective force pushing them forward, and (3) their
mechanical properties can be studied by seeing how their motion changes as the external
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Figure (12.2.3) The effective potential for moving along the DNA (from Prost, above).
Ignoring the tilt We, Feynman’s energy barrier ε is the difference between the bottom
of the wells and the top of the barriers. The experiment changes the tilt by adding an
external force pulling � to the left. In the absence of the external force, We is the (Gibbs
free) energy released when one NTP is burned and one RNA nucleotide is attached.

force on them is changed (figure 12.2.2).

For transcription of DNA into RNA, the motor moves on average one base pair (A, T, G
or C) per step: ∆� is about 0.34nm. We can think of the triangular grooves in the ratchet
as being the low-energy states of the motor when it is resting between steps. The barrier
between steps has an asymmetric shape (figure 12.2.3), just like the energy stored in the
pawl is ramped going up and steep going down. Professor Wang showed (in a later paper)
that the motor stalls at an external force of about 27 pN (pico-Newton).

(a) At that force, what is the energy difference between neighboring wells due to the
external force from the bead? (This corresponds to Lθ in Feynman’s ratchet.) Let’s
assume that this force is what’s needed to balance the natural force downhill that
the motor develops to propel the transcription process. What does this imply about
the ratio of the forward rate to the backward rate, in the absence of the external
force from the laser tweezers, at a temperature of 300K, (from Feynman’s discussion
preceding equation 46.1)? (kB = 1.381 × 10−23J/K).

The natural force downhill is coming from the chemical reactions which accompany the
motor moving one base pair: the motor burns up an NTP molecule into a PPi molecule,
and attaches a nucleotide onto the RNA. The net energy from this reaction depends on
details, but varies between about 2 and 5 times 10−20 Joule. This is actually a Gibbs free
energy difference, but for this problem treat it as just an energy difference.

(b) The motor isn’t perfectly efficient: not all the chemical energy is available as motor
force. From your answer to part (a), give the efficiency of the motor as the ratio of
force-times-distance produced to energy consumed, for the range of consumed energies
given.
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(12.3) Carnot Refrigerator. Our refrigerator is about 2m × 1m × 1m, and has insu-
lation about 3cm thick. The insulation is probably polyurethane, which has a thermal
conductivity of about 0.02 W/(m K). Assume that the refrigerator interior is at 270K, and
the room is at 300K.

(a) How many watts of energy leak from our refrigerator through this insulation?

Our refrigerator runs at 120 V, and draws a maximum of 4.75 amps. The compressor
motor turns on every once in a while for a few minutes.

(b) Suppose (i) we don’t open the refrigerator door, (ii) the thermal losses are dominated
by the leakage through the foam and not through the seals around the doors, and (iii)
the refrigerator runs as a perfectly efficient Carnot cycle. How much power on average
will our refrigerator need to operate? What fraction of the time will the motor run?

(12.4) Entropy of Glasses. Glasses aren’t really in equilibrium. In particular, they do
not obey the third law that the entropy S goes to zero as the temperature approaches
absolute zero. Experimentalists measure a “residual entropy” by subtracting the entropy
change from the known entropy Sequilibrium(T ) at high temperatures (say, in the ordinary
equilibrium liquid state):

Sresidual = Sequilibrium(T ) −
∫ T

0

dQ

T dT
dT.

Usually, one calls dQ/dT the specific heat C of the material, but we’re being fussy:

(a) If you put a glass in an insulated box, it will warm up (very slowly) because of
microscopic atomic rearrangements which lower the potential energy. So, glasses don’t
have a well-defined temperature or specific heat. In particular, the heat flow upon
cooling and on heating dQ

dT (T ) won’t precisely match (although their integrals will agree
by conservation of energy). By using the second law (entropy can only increase), show
that the residual entropy measured on cooling is always less than the residual entropy
measured on heating.∗

(b) The residual entropy of a glass is about kB per molecular unit. It’s a measure of how
many different glassy configurations of atoms the material can freeze into (section I.46-
4). In a molecular dynamics simulation with one hundred indistinguishable atoms,
and assuming that the residual entropy is kB log 2 per atom, what is the probability
that two coolings to zero energy will arrive at equivalent atomic configurations (up to
permutations)? In a system with 1023 molecular units, with residual entropy kB log 2
per unit, about how many coolings would be needed to arrive at the same configuration
twice?

∗ See Steve Langer’s paper, Phys. Rev. Lett. 61, 570 (1988), although M. Goldstein
noticed it earlier.
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Physics 218—Exam I (October 3) Fall 2003
James P. Sethna

NAME:

The multiple choice problems have been designed so that, if you are inspired, you can
do them quickly without calculations. There are no tricks to speed up the short answer
question.

Multiple Choice (40 pts): x 5pts =

Short Answer: S1 (30 pts)

S2 (30 pts)

TOTAL
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Multiple Choice: Be sure to put answers in boxes provided.
(Sorry: no partial credit!)

M1. (25 pts) Waves on Strings: Heights and and Velocities.

The figure above shows a packet travelling to the right on a horizontal stretched string.
The black line shows the height η(x, t), and the grey line shows the velocity ∂η

∂t
(x, t) Of

the six figures below, five represent the shape of this pulse at a later time, under various
circumstances. In the blanks after the five circumstances (A-E) below, give the number of
the corresponding figure (1-6). (5 points each)

(1) (2) (3)

(4) (5) (6)

(A) Middle of the packet hitting fixed boundary on right.
(B) Middle of the packet hitting free boundary on right.
(C) Chirping after a long propagation time due to dispersion.
(D) Reflection and transmission at step up in mass density of string (at center).
(E) Reflection and transmission at step down in mass density of string (at center).
Warning: Incident pulse is roughly antisymmetric, so it acts differently than you may
remember for symmetric pulses.
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M2. (15 pts) Fourier.

(1) (2) (3)

(4) (5) (6)

Which figure (1-6) above is the Fourier representation of the following three figures below?
(Dark line is real part, lighter line is imaginary part.)

(A) (B) (C)
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Short Answer: Show Your Work

S1. (30 pts) Energy Conservation: Reflection and Transmis-
sion.

(A) Pulses. An incident pulse ηI(x, t) = f(x/c1 − t) is moving right on a horizontal
stretched string with tension τ towards the origin at x = 0. At x = 0, there is a (massless)
discontinuity in the mass density of the string, such that the sound velocity changes from
c1 for x < 0 to c2 for x > 0. Assume the reflection and transmission coefficients are R and
T for the pulse.

Write a formula for the reflected pulse ηR(x, t) and transmitted pulse ηT (x, t), leaving your
result in terms of f , R, T , c1, and c2. For your and our convenience, do not solve for R
and T in terms of the two speeds of sound. Also, write the equation for R involving T
that guarantees that the string is continuous at x = 0.∗

ηR(x, t) =

ηT (x, t) =

R = is implied by continuity of string.

∗ Hint: To check your answer for R, see if R = (c2 − c1)/(c2 + c1) and T = 2c2/(c2 + c1)
satisfies your equation.
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(B) Energy. Write expressions for the total energy (the integral of the energy density E)
for the incident pulse EI , the transmitted pulse ET , and the reflected pulse ER. Change
variables and simplify until each becomes a constant times

∫
f ′(z)2 dz. Your constants

may involve R, T , τ , c1, and c2, but should not need to involve any other parameters.

EI =
∫

(f ′(z))2 dz

ER =
∫

(f ′(z))2 dz

ET =
∫

(f ′(z))2 dz
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(C) Conservation of Energy. The discontinuity in the string neither holds nor dissi-
pates energy, so the energy of the incident pulse must equal the sum of the energy of the
transmitted and reflected pulses. Using your solution to part (B), give an equation for R2

involving c1, c2, and T that expresses this conservation of energy.∗ (Please don’t plug in
your last formula from part (A): we want the condition just for energy conservation, not
including continuity of string.)

R2 = is implied by energy conservation.

∗ Hint: To check your answer, see if R = (c2 − c1)/(c2 + c1) and T = 2c2/(c2 + c1)
satisfies your equation.
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S2. (30 pts) Deriving the Wave Equation for Sound in Air.
s(x,t)

In deriving the wave equation for sound, we made a linear approximation to the pressure
dependence on the volume (P ≈ P0 − B∆V/V ). This is just the first term in a Taylor
series.∗ Let’s find out what happens when we add the first nonlinear term,

P = P0 − B1
∆V

V
+ B2

(
∆V

V

)2

. (S2.1),

where, as before, ∆V
V = ∂s/∂x for a longitudinal wave varying only along the x̂ axis.

(A) Sound in Air: First Nonlinear Terms. Derive the equation of motion for the lon-
gitudinal displacement field s(x, t) in air of density ρ, keeping the first nonlinear correction
proportional to B2 above.

∂2s
∂t2

= .

∗ For dilute gasses the full dependence has P ∼ V −γ .
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(B) Sound in Air: Symmetry Analysis.

The laws for sound in air have five of the six symmetries associated with waves on strings.
They have the three continuous symmetries: they are homogeneous (translation invariant,
x → x + ∆), time independent (t → t + ∆), and are invariant under an overall shift in
the displacement field s → s + ∆.† They have two of the discrete symmetries of waves
on strings: they are reflection invariant (x → −x), and time reversal invariant (t → −t).
They do not have an independent symmetry for reversing the sign of the displacement
field: the transformation properties of s under reflection and time reversal symmetry are
intertwined, since s points along the x axis.

s(x,t)

s(-x,t)
Fill in the boxes below, with a +1 for those quantities which are unchanged under the
symmetry and a −1 for those quantities which change sign under the symmetry. Then
check that the term proportional to B2 in your answer to part (A) above transforms in
the same way as the other terms in the wave equation.

Discrete symmetry transformation properties

s ∂s
∂x

∂s
∂t

∂2s
∂x2

∂2s
∂t2

∂2s
∂x∂t Your (A)

x → −x

t → −t

† Check that your answer to part (A) is invariant under these continuous symmetries!
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Physics 218—Exam I (October 3) Fall 2003
Formula Sheet

James P. Sethna

Complex Trigonometry. exp(iz) = cos(z) + i sin(z), cos(z) = (exp(iz) + exp(−iz))/2,
and sin(z) = (exp(iz) − exp(−iz))/(2i). sin(A + B) = sin A cosB + cos A sin B, cos(A +
B) = cos A cosB − sin A sin B, exp(iA) + exp(iB) = exp (i(A + B)/2) 2 cos ((A − B)/2),
cos(A) + cos(B) = 2 cos ((A + B)/2) cos ((A − B)/2).
Fourier.
ỹm = (1/L)

∫ L

0
y(x) exp(−ikmx)dx where km = 2πm/L; y(x) =

∑∞
m=−∞ ỹm exp(ikmx).

ỹ(k) =
∫ ∞
−∞ y(x) exp(−ikx) dx; y(x) = (1/2π)

∫∞
−∞ ỹ(k) exp(ikx) dk.

ỹFFT
m =

∑N−1
�=0 y� exp(−i2πm�/N) with m = 0, . . .N − 1; ỹFFT

m =
∑N−1

�=0 y� exp(−ikmx�).

G(x) = 1√
2πσ

exp
(−(x − x0)2/2σ2

)
; G̃(k) = exp(−ikx0) exp(−σ2k2/2).

Orthonormality.

(1/L)
∫ L

0
exp(ikmx) exp(iknx) dx = δmn, where δmn = 0 for m �= n and δmn = 1 for m = n.

The Fourier transform of a Gaussian of width σ, f(x) = 1√
2πσ

exp
(−x2/2σ2

)
is a Gaussian

f̃(k) = exp
(−σ2k2/2

)
of width 1/σ. The Fourier transform of f(x−x0) is exp(−ikx0)f̃(k).

Wave Equation ∂2η/∂t2 = c2∂2η/∂x2. Traveling wave solution η(x, t) = f(x ± ct).
Standing-wave solution η(x, t) = A sin(kx) sin(ωt). Traveling sine wave (Plane wave)
η(x, t) = A sin(kx − ωt), with ω/k = c.

c =
√

τ/λ0, K(x, t) = (λ0/2) (∂η/∂t)2, V (x, t) = (τ/2) (∂η/∂x)2, E(x, t) = K(x, t) +
V (x, t), P (x, t) = −τ(∂η/∂t)(∂η/∂x), gx(x, t) = −λ0(∂η/∂t)(∂η/∂x).
Traveling waves, η(x, t) = f(x ± ct) have special properties: ∂η/∂x = ±(1/c)(∂η/∂t),
K(x, t) = V (x, t), E(x, t) = τ (∂η/∂x)2.
Sound: c =

√
B/ρ = 340 m/s for air. p = −B(∂s/∂x), ∂2s/∂t2 = −(1/ρ)∂p/∂x.

General Solutions, bounded at infinity.
Finite string: η(x, t) =

∑∞
n=1 sin(knx) (an cos(ωnt) + bn sin(ωnt)), ωn = ckn, kn = nπ/L.

Infinite string: η(x, t) = f(x − ct) + g(x + ct); initial displacement f(x) + g(x), initial
velocity c(g′(x) − f ′(x)).
Boundary Conditions. Fixed: η = ∂η/∂t = 0. Free: ∂η/∂x = 0. Both fixed or free:
ωn = cnπ/L; mixed ωn = c(2n + 1)π/2L.
Symmetries. The wave equation is symmetric under (a) Reflection along x, η̃(x, t) =
η(−x, t), (b) Time reversal, η̃(x, t) = η(x,−t), (c) Reflection along y, η̃(x, t) = −η(x, t). It
is also (d) Homogeneous, η̃(x, t) = η(x−∆, t), (e) Time independent, η̃(x, t) = η(x, t−∆),
and invariant under (f) Sideways motion, η̃(x, t) = η(x, t) + ∆.

Reflection and Transmission (Massless Knot). R = (Z1 − Z2)/(Z1 + Z2) and T =
2Z1/(Z1+Z2) where impedances Zi =

√
λiτi. If the tension is constant, R = (c2−c1)/(c2+

c1) and T = 2c2/(c2 + c1)
Group and Phase Velocities. Phase velocity ω(k)/k. Group velocity dω/dk. One
dimensional chain ω(k) =

√
K/M

√
2 − 2 cos(ka).
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Physics 218—Exam II (Friday November 9) Fall 2003
James P. Sethna

NAME:

The multiple choice problems have been designed so that, if you are inspired, you can
do them quickly without calculations. There are no tricks to speed up the short answer
question.

Multiple Choice (50 pts): x 5 pts =

Short Answer: S1 (50 pts)

TOTAL
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Multiple Choice. (Sorry: no partial credit!)

M1. (20 pts) Interference.

Two point sources at x = 0 and y = ±2
meters, emit radiation with λ = 1 meter.
The two sources are out of phase by π, so
the amplitude A(x, y, t) of the waves at
a point (x, y) a distance r1 and r2 from
the two sources is A0(cos(kr1 − ωt)/r1 −
cos(kr2 − ωt)/r2). (This question should
look familiar from the last quiz in sec-
tion.) From the figures (1-6) below, pick
the one corresponding to the average in-
tensity along the four dashed lines shown.
The lower left corner in each plot is (0,0):
five points each.)

(A) along y = 0, from x = 0 to x = 4m,
(B) along x = 0, from y = 0 to y = 4m,
(C) along y = −2m, from x = 0 to x = 4m,
(D) at a distant screen x = 100m, from y = 0 to y = 100m.

(1) (2) (3)

(4) (5) (6)
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M2. (30 pts) Tensor Manipulations.
Let a and b be vector fields. For each of the formulas (A), (B), and (C), determine which
two tensor formulas (1-6) are equal to it. (5 points each.)

(A) ∇(a · b)
(B) ∇ · (a × b)
(C) ∇× (a × b)

(1) εijk∂i(ajbk)
(2) bj∂iaj + aj∂ibj

(3) εijkεk�m∂j(a�bm)
(4) ∂i(ajbj)
(5) biεijk∂jak − aiεijk∂jbk

(6) ∂j(aibj) − ∂j(ajbi)

Check that you’ve put two choices for each of three formulas.
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Short Answer: Show Your Work

S1. (50 pts) Elastic Properties of Square Crystals.
In this problem, we consider materials in two dimensions (x,y): you may ignore z or

assume everything is uniform and undisplaced in the z direction. Let εV =
(

0 0
0 ε0

)
and

εD =
(

ε0/2 ε0/2
ε0/2 ε0/2

)
represent the elastic strains of two blocks of material, one strained

vertically and the other strained along a diagonal, as shown in the figure below.

(A) If two points are separated by dV = (0, a) in the undeformed state, what distance
apart will they be in the deformed state with strain εV ? (Hint: remember we derived
ε so that two nearby points separated by d in the undeformed material had squared
distance d2

i +2εijdidj in the deformed material.) Two points separated by dD = (a, a)
under εD? Do they have the same magnitude of elastic strain ∆L/L (with L vertical
or diagonal distance, respectively), or not?

Distance for dV under εV =
Distance for dD under εD =
Same magnitude of strain? T F
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(B) What would the elastic stress σV
ij be, corresponding to the vertical strain εV =(

0 0
0 ε0

)
, assuming an isotropic medium with elastic constants λ and µ? What would σD

ij

be for the diagonal strain εD =
(

ε0/2 ε0/2
ε0/2 ε0/2

)
?

σV
ij =





 σD

ij =
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In lecture, we’ve focused on the elastic properties of isotropic materials, like glass and
rubber, which act the same whichever direction they are strained. If our material is a
crystal, with rows and columns of atoms along the x̂ and ŷ axes (like the grid points on
the figure), it’s clear that a vertical strain is different physically from a diagonal strain.
(The diagonal deformation, for example, changes the bond angles, while the vertical one
does not.)
Cubic crystals (or, in two dimensions, crystals with square symmetry) have three indepen-
dent elastic constants: cxxxx = cyyyy = C11, cxxyy = cyyxx = C12 and cxyxy = cyxyx =
cxyyx = cyxxy = C44, and the other tensor elements are zero. The constants C11, C12,
and C44 are the names the engineers use for these three cubic elastic constants, which
correspond to the two isotropic elastic constants λ and µ. (Capital C, big numbers, and
only two indices distinguish them from the physics names for the elastic constants.)
(C) What is the elastic strain σCV

ij and σCD
ij for a square material with anisotropic elastic

constants C11, C12 and C44, stretched vertically and diagonally as in part (B)?

σCV
ij =





 σCD

ij =
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Aluminum, a cubic crystal, happens to be nearly isotropic.
(D) Derive formulas for aluminum’s three cubic elastic constants in terms of the two
isotropic elastic constants λ and µ, using the isotropic formula cijk� = µ(δikδj� + δi�δjk) +
λδijδk�. You may wish to use it to check that your answers to parts (B) and (C) agree for
aluminum.

C11 =
C12 =
C44 =
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Physics 218—Exam II (November 9) Fall 2003

Formula Sheet
James P. Sethna

Sound Waves in Three Dimensions.
ρ∂2u/∂t2 = −∇p, p = −B∇ · u, ∂2p/∂t2 = c2∇2p with c =

√
B/ρ, ∂2u/∂t2 = c2∇2u.

Spherical waves: p(r, t) = f(|r| − ct)/|r|.
Snell’s law: n1 sin θ1 = n2 sin θ2, where the index of refraction n =

√
εµ is c/v.

Phase shift π on reflection where the index of refraction increases (e.g., light off glass).
Intensity along the direction of propagation I = p∂u/∂t,
energy density E = (ρ/2)(∂u/∂t)2 + p2/(2B).
If p(t) =

∑
n p̃n exp(iωnt) and ρ(t) =

∑
m ρ̃m exp(iωmt), then the total power is the sum

of the power in each frequency channel:
∑

n(−iω/2)p̃nρ̃∗
n.

Interference and Diffraction.
Double Slit. Phase difference φ = 2πd sin(θ)/λ = kd sin(θ).
Intensity Iav = 4I0 cos2(φ/2) = 4I0 cos2(kd sin θ/2) (I0 single slit intensity).
Constructive for d sin θ = 0,±λ,±2λ, . . ., destructive for d sin θ = ±λ/2,±3λ/2, . . ..
Multiple slits. Iav = I0 sin2(Nφ/2)/ sin2(φ/2); principle maxima at φ = 0, 2π, 4π, de-
structive at φ = 2mπ/N with m any integer except 0,±N,±2N, ....
Diffraction. If the slit opening is f(x), Iav ∝ |f̃(k sin θ)|2.
The Fourier transform of a shifted function f(x − ∆) is exp(−i∆k)f̃(k).
Single wide slit. Iav = Icenter sin2 α/α2 with α = ak sin(θ)/2.

Tensor Notation.
Einstein convention: aijk�bimno =

∑3
i=1 aijk�bimno.

Dot product a · b = aibi, matrix applied to vector (Mx)i = Mijxj , matrix multiplication
(MN)ij = MikNkj , trace Tr(M) = Mii.
Laplacian ∇2f = ∂i∂if = ∂2

xf + ∂2
yf + ∂2

zf, divergence ∇ · v = ∂ivi.
Identity tensor δij , equals one if i = j, zero otherwise.
Totally antisymmetric tensor εijk : εijk = −εjik = −εikj = −εkij . ε123 = 1 = ε231 = ε312,
ε321 = ε213 = ε132 = −1, zero if any index repeats.
(a × b)i = εijkajbk, (∇× v)i = εijk∂jvk, det M = (1/6)εijkε�mnMi�MjmMkn.
δii = 3, εijkδjk = 0, εijkεijk = 6, εijkεij� = 2δk�, εijmεk�m = δikδj� − δi�δjk.

Elasticity Theory.
Stress tensor σijn̂j = Force/Area across surface perpendicular to n̂. σij = σji because
torques on small volumes must vanish. Force on a small volume Fi = ∂jσij . For hydrostatic
pressure P , σij = −Pδij .
Strain tensor εij = (1/2) (∂iuj + ∂jui + ∂iuk∂juk) , where the last term (the geometric
nonlinearity) is usually ignored. Two nearby points separated by d in the undeformed
material will have squared distance d2

i + 2εijdidj in the deformed material. εij = εji. The
strain tensor for uniform stretching −∆V/V = 3∆L/L would be εij = (∆L/L)δij.
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Tensor of elasticity cijk� gives Hooke’s law for anisotropic media, σij = cijk�εk�. cijk� =
cjik� = cij�k = ck�ij . There are 21 possible independent elastic constants.
The elastic energy density E = (1/2)σijεij = (1/2)cijk�εijεk�.
Isotropic moduli. The bulk modulus K is the same as B for fluids: P = −K(∆V/V ).
Under a shear by an angle θ, E = (1/2)µθ2.
Under unconstrained stretching, F/A = Y ∆L/L, and ∆W/W = −ν∆L/L, where ν is
Poisson’s ratio. K = 2µ/3 + λ, ν = λ/2(µ + λ), and Y = (2µ2 + 3λµ)/(µ + λ).
Isotropic Tensors. cijk� = µ(δikδj� + δi�δjk) + λδijδk�. σij = 2µεij + λεkkδij . E =
µεijεij + (λ/2)(εkk)2.
Wave equations. ρ0∂

2ui/∂t2 = ∂jσij = (1/2)cijk�∂j(∂ku� + ∂�uk). For isotropic media,
ρ0∂

2ui/∂t2 = (λ + µ)∂i∂juj + µ∂j∂jui, or ρ0∂
2u/∂t2 = (λ + µ)∇(∇ · u) + µ∇2u.

Decomposing u = uT +uL with ∇·uT = 0 and ∇×uL = 0, we have ∂2uT /∂t2 = c2
T∇2uT

and ∂2uL/∂t2 = c2
L∇2uL, with cT =

√
µ/ρ0 and cL =

√
(λ + 2µ)/ρ.

WKB.

If c(x) varies slowly, the solution to a wave equation ∂2η/∂t2 = c(x)2∂2η/∂x2 is approx-
imately of the WKB form η(x, t) = A(x) cos ((S(x) − ωt)), where the phase dS(x)/dx =
ω/c(x) = k(x) and the amplitude A(x) = A(x0)

√
c(x)/c(x0).

Formulas from Prelim I.

Trigonometry f = ω/2π, and k = 2π/λ. exp(iz) = cos(z) + i sin(z), cos(z) = (exp(iz) +
exp(−iz))/2, and sin(z) = (exp(iz) − exp(−iz))/(2i).
Wave Equation Solutions. The wave equation

∂2η/∂t2 = c2∂2η/∂x2

has a traveling wave solution η(x, t) = f(x ± ct), a standing-wave solution η(x, t) =
A sin(kx) sin(ωt), and (as a special case) a traveling sine wave η(x, t) = A exp (i(kx − ωt)),
where ω/k = c.
Fourier Transform of a Gaussian. If f(x) = (1/

√
2πσ) exp

(−x2/2σ2
)
, f̃(k) =

exp
(−σ2k2/2

)
.
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Physics 218—Final Exam (December 16) Fall 2003
James P. Sethna

NAME:

S1 (40 pts)

S2 (60 pts)

S3 (40 pts)

S4 (30 pts)

S5 (30 pts)

TOTAL (200 pts)
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Short Answer: Show Your Work

S1. (40 pts) Quantum Dice. (Thanks to Sarah Buchan.)

R
ol

l #
2 3

1

2

1 2 3

3 4

5

5 6

43

4

2

Roll #1

Rolling two dice. In Bosons,
one accepts only the rolls in
the shaded squares, with equal
probability 1/6. In Fermions,
one accepts only the rolls in
the darkly shaded squares (not
including the diagonal), with
probability 1/3.

You are given several unusual ‘three-sided’ dice which, when rolled, show either one, two,
or three spots. There are three games played with these dice, Distinguishable, Bosons
and Fermions. In each turn in these games, the player rolls one of the dice at a time,
starting over if required by the rules, until a legal combination occurs. In Distinguishable,
all rolls are legal. In Bosons, a roll is legal only if the new number is larger or equal to
the preceding number. In Fermions, a roll is legal only if the new number is strictly larger
than the preceding number.

(A) Presume the dice are fair: each of the three numbers of dots shows up 1/3 of the time.
For a legal turn rolling a die twice in Bosons, what is the probability ρ(4) of rolling
a 4? Similarly, among the legal Fermion turns rolling two dice, what is the probability
ρ(4)?

Two rolls, three-sided Boson ρ(4) =

Two rolls, three-sided Fermion ρ(4) =
Comment: Our dice rules are the same ones that govern the quantum statistics of identical
particles.

2



(B) For a legal turn rolling three ‘three-sided’ dice in Fermions, what is the probability
ρ(6) of rolling a 6?

Three rolls, three-sided Fermion ρ(6) =

Hint: there’s a Fermi exclusion principle: when playing Fermions, no two dice can have
the same number of dots showing.
Comment: Electrons are fermions; no two electrons can be in exactly the same state.
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When rolling two dice in Bosons, there are six different legal rolls (11), (12), (13), . . . ,
(33): half of them are doubles (both numbers equal), when for plain old Distinguishable
rolls only one third would be doubles∗: the probability of getting doubles is enhanced
by 1.5 times higher in two-roll Bosons. When rolling three dice in Bosons, there are ten
different legal rolls (111), (112), (113), . . . , (333). When rolling M dice each with N sides

in Bosons, one can show that there are
(

N + M − 1
M

)
= (N+M−1)!

M !(N−1)!
legal rolls.

(C) What is the enhancement of probability for 3 rolls of a three-sided dice of getting triples
in Bosons over that in Distinguishable? What is the enhancement of probability for
M rolls generating an M-tuple (all rolls having the same number of dots showing)?

Enhancement for 3 rolls=

Enhancement for M rolls=

Comment: The states of the dice tend to clump together in Bosons. Examples of real
bosons clumping into one state include superfluidity and lasers.

∗ For Fermions, of course, there are no doubles.
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S2. (60 pts) Barrier Crossing.

Position X
0

X
B

E
ne

rg
y

B

X

Barrier crossing potential, and
a schematic of how many atoms
are at each position. (Ac-
tually, of course, the atoms
are scattered at different X ,
not at different “heights” in
energy.)

In this problem, we will derive the rate at which systems cross energy barriers, Γ =
Γ0 exp(−E/kBT ). We derived this Arrhenius formula in class, but did not carefully treat
the prefactor Γ0.
Consider a system described by a coordinate X , with an energy U(X) with a minimum
at X0 with energy zero and an energy barrier at XB with energy U(XB) = B.∗ Let the
temperature of the system be much smaller than B/kB. To do our calculation, we will
make some approximations. (1) We assume that the atoms escaping across the barrier to
the right do not scatter back into the well. (2) We assume that the atoms deep inside the
well are in equilibrium. (3) We assume that the particles crossing to the right across the
barrier are given by the equilibrium distribution inside the well.
(A) Let the probability that a particle has position X be ρ(X). What is the ratio of

probability densities ρ(XB)/ρ(X0) if the particles near the top of the barrier are
assumed in equilibrium with those deep inside the well?

ρ(XB)/ρ(X0) =
Related formulæ: Boltzmann distribution ρ ∝ exp(−E/kBT ).

∗ This potential could describe a chemical reaction, with X being a reaction coordinate.
It could describe the escape of gas from a moon of Jupiter, with X being the distance from
the moon in Jupiter’s direction.
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Barrier crossing potential, and
the approximate probability
distribution for the atoms still
trapped inside the well.

If the barrier height B >> kBT , then most of the particles in the well stay near the bottom
of the well. Often, the potential near the bottom is accurately described by a quadratic
approximation U(X) ≈ (1/2)Mω2(X −X0)2, where M is the mass of our system and ω is
the frequency of small oscillations in the well.
(B) In this approximation, what is the probability density ρ(X) near the bottom of the

well? What is ρ(X0), the probability density of having the system at the bottom of
the well?

ρ(X) =

ρ(X0) =

Related formulæ: Gaussian probability distribution (1/
√

2πσ2 exp(−x2/2σ2).
Hint: Make sure you keep track of the 2πs.
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∆v   t

Barrier crossing potential, and
a sketch of the range of posi-
tions that atoms moving to
the right with velocity v will
cross the barrier top in time
∆t.

Knowing the answers from (A) and (B), we know the probability density ρ(XB) at the
top of the barrier. We need to also know the probability that particles near the top of the
barrier have velocity V , because the faster-moving parts of the distribution of velocities
contribute more to the flux of probability over the barrier (see figure above). As we
discussed in class, because the total energy is the sum of the kinetic and potential energy,
the total Boltzmann probability factors: in equilibrium the particles will always have a
velocity probability distribution ρ(V ) = 1/

√
2πkBT/M exp(−(1/2)MV 2/kBT ).

(C) First give a formula (for ease of grading) for the decay rate Γ (the probability per
unit time that our system crosses the barrier towards the right), for an unknown
probability density ρ(XB)ρ(V ) as an integral over the velocity V . Then, using your
formulas from parts (A) and (B), give our estimate of the decay rate for our system.

Γ = (integral form for unknown ρ(XB) and ρ(V ))

Γ = (using your answer from earlier parts).
Related formulæ:

∫ ∞
0

x exp(−x2/2σ2) dx = σ2.
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S3. (40 pts) Interference of Elastic Waves.

d

L

An isotropic elastic solid of density ρ is cut into a slab of width L in the z direction. Two
sources of vibration at frequency ω are attached to the top surface at z = 0, separated
by a distance d in the y direction. The elastic moduli of the material are λ and µ. The
two sources are hemispheres embedded into the material, which pulse outward with radius
r = r0 + A sin(ωt), emitting compressive spherical waves into the medium.

(A) If only one source is turned on, what wavevector k will the resulting spherical waves
have?

k =
Related formulæ: cT =

√
µ/ρ for waves with zero divergence, cL =

√
(λ + 2µ)/ρ for

waves with zero curl.
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The average sound intensity is measured at the bottom surface of the figure in part (A), as
a function of x (horizontal in the figures below) and y (vertical) each ranging from (-4m,
4m). (Ignore reflections from the surfaces.) The sources are at y = ±1 m, and the wave
vector of the sound is k = 50. The experiment is repeated four times, with different slab
thicknesses L. The grayscales in the different figures are not the same, but the black and
white regions do represent local constructive and destructive interference.

(B) Which figure corresponds to which distance?

(1) (2) (3) (4)

L = 0.2 is figure

L = 1 is figure

L = 5 is figure

L = 25 is figure

Related formulæ: Spherical wave amplitude A = Re[exp (i(kr − ωt)) /r; two sources
d sin θ = nλ for constructive interference.
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S4. (30 pts) Diffusion Tensor.
Consider diffusion in an anisotropic material like graphite. Atoms stuck between layers
will diffuse relatively easily in the plane parallel to the layers, but there will be very little
diffusion perpendicular to the layers.
In general, the diffusion tensor Dij relates the (vector) current Ji to the (vector) gradient
of the density ∂jρ:

Ji = −Dij∂jρ (S4.1)

The diffusion tensor is symmetric, Dij = Dji.

(A) Given the definition (S4.1) above, derive the anisotropic diffusion equation of motion
for ∂ρ/∂t.

∂ρ/∂t =
Related formula: Conservation of probability: ∂ρ/∂t = −∇ · J .
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A piece of graphite has layers parallel to the xy plane. An atom starts at the origin at
t = 0 and undergoes a random walk through the graphite. At equally spaced times t = nτ
the atom takes a step from (x, y, z) to one of the four positions (x±a, y, z) or (x, y±a, z),
each with probability 1/4. In addition, at times t = 200mτ the atom takes a step to
(x, y, z ± c), each with probability 1/2.

(B) After a time t = T , what will the root-mean-square distance moved be by the atom
along x, along y, and along z?

√〈x2〉 =√〈y2〉 =√〈z2〉 =

Related one-dimensional formulæ: If sN =
∑N

i=1 xi and 〈xixj〉 = σ2δij , then 〈s2
N 〉 =

〈s2
N−1〉 + σ2 = Nσ2.
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The diffusion tensor for graphite is diagonal: only the three entries D11, D22, and D33 are
non-zero. One can show that the root-mean-squared distance diffused along the three axes
is given by the corresponding diffusion constant, so for example 〈y2〉 = 2D22t.

(C) Fill in the values for Dij for the continuum limit of the random walk described in
part (B).

Dij =




0 0

0 0

0 0




Related one-dimensional formulæ:
√〈x2〉 =

√
2Dt; G(x, t) = 1/

√
4πDt exp(−x2/4Dt)
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S5. (30 pts) Information entropy.
Entropy is a measure of your ignorance about a system: it is a measure of the lack of in-
formation. It has important implications in communication technologies: messages passed
across the Ethernet communicate information, reducing the information entropy for the
receiver. Shannon worked out the use of entropy ideas in communications, focusing on
problems where different messages have different probabilities. We’ll focus on the simpler
problem where all N messages are equally likely. Shannon defines the information entropy
of an unread message as being log2 N = kS log N , where kS = 1/(loge 2) is analogous
to Boltzmann’s constant, and changes from log-base-e to log-base-2 (more convenient for
computers, which think in base two.)
Your grandparent has sent you an e-mail message. From the header of the message, you
know it contains 1000 characters. You know each character is made of 8 bits, which
allows 28 = 256 different letters or symbols per character. Assuming all possible mes-
sages from your grandparent are equally likely (a typical message would then look like
G*(me‘!8V[beep]. . . ), how many different messages N could there be? This (unrealistic)
assumption gives an upper bound for the information entropy Smax.

(A) What Smax for the unread message?

N =
Smax =
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Your grandparent writes rather dull messages: they all fall into the same pattern. They
have a total of 16 equally likely messages. ∗ After you read the message, you forget the
details of the wording anyhow, and only remember these key points of information.

(B) What is the actual information entropy change ∆SShannon you undergo when reading
the message? If your grandparent writes one message per month, what is the minimum
number of 8-bit characters per year that it would take to send your grandparent’s
messages? (You may lump multiple messages into a single character.)

∆SShannon =

Characters per year =

Hints: ∆Sshannon is the change in entropy from before you read the message to after you
read which of 16 messages it was. The length of 1000 is not important for this part.
Remark: This is an extreme form of data compression, like that used in gif images, zip
files (Windows) and gz files (Unix). We are asking for the number of characters per year
for an optimally compressed signal.

∗ Each message mentions whether they won their bridge hand last week (a fifty-fifty
chance), mentions that they wish you would write more often (every time), and speculates
who will win the women’s college basketball tournament in their region (picking at random
one of the eight teams in the league.
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