P218 FOI Lecture 8

1

Sound and Atoms: The One Dimensional Crystal Aton Mass Chemical Bond = Spring Constant R Chain of Balls and Springs, Longitudinal Wave Und Un Unti Untz Untz Ot CO CO CO SX = Spring Length n Sx = Unde Formed Position ~o~o~o~o~o~ AB Xn = n Sx + Un = Current position

Bond Bis stretched : length is Sx + Unti - Un force of atom n is K (Unti - Un) toright

Bond A is squeezed! length is $\delta x + u_n - u_{n-1}$ $\xi \pm f u_{n-u_{n-1}} < 0 \xi$ force on atom n is $-K(u_n - u_{n-1})$ (Force on $u_n > 0 \xi$ to right note $Ma = m \frac{d'u_n}{dt^2} = K(u_{n+i} - u_n) - K(u_n - u_{n-i})$ d'un/dtz = K (Un+1-2un+Un-1) & Should Should Samiliar? Real chain of atoms = Approximate wave equation

Sound Demo

Need: Mac, running MacCRO (Cathode Ray Oscilloscope?) Tuning Fork, medium Organ Pipe, medium Cardboard tube "Pipette" Sonometer (string) Input Settings: Set Gain 110 Voice: Oscilloscope: Time Scale 10 ms/div 50 mV/div Trace A Triggering Deep voice: hum, show periodicity in wave form **Tuning Fork (medium):** Time Scale 0.1 ms/div 10 mV/div Trace A Show Sinusoidal wave form Spectrum Analyzer: Resolution 2 Hz 0-2000 0-5 Label Peaks See single harmonic Voice: 0-500 0-5 Freeze Display See all the harmonics Medium Pipe Organ (ask for volunteers): 0-2000 0-5 See all harmonics **Pipette:** 0-1000 0-5 See odd peaks high Sonometer: 0-5000-2 Pluck middle, odd harmonics (node at center for even harmonics) Pluck near end, all harmonics

P214 F98 2 Lecture 10 SOUND DEMO: ORGAN PIPES Shape of wave OSCILLOSCOPE & MIKE TUNING FORK FREQUENCY ANALYZER Harmonics ORGAN PIPE, FLUTE, TUBA, Atom Displacement S(X) OPEN NE Posplacement 2010 Pressure Matches Pressure P, p Outside Density Pressure, Density Fluctuate About Patm Atmospheric P,P Free Boundar (Approximatel Fixed Boundary

P214 F98 O Lecture 10 longitudinal Wave Equation for Sound in One Dimension) Arra, spacing between atoms Air, water, solids: Pressure depends on Volume $P = P_0 - IS\left(\frac{\Delta V}{V}\right)$ B = Bulk ModulusGood for small $\frac{\Delta V}{V}$ Area $V = H \ \delta x$ $V + \Delta V = A \left\{ \delta x + s(x + \delta x) - s(x) \right\}$ 5(x+8x) esx-> $\Delta V = A \left[s(x + \delta x) - s(x) \right]$ $P-P_{o} = -B \frac{AV}{V} = -B \frac{A(S(X+SX)-S(X))}{ASX} = -B \frac{\partial S}{\partial X}$ Pressure is Force per unit Area +) AP(x+5x) Force = A P(x) P(x) P(x+Sx) - AP(X+ Sx) = Ma pASx 225 2+2 $\rho A S_{X} \frac{\partial^{2} S}{\partial t^{2}} = A^{2}(P(x) - P(x + S_{X})) \int_{S}^{-B} \frac{\partial S}{\partial x}$ $\frac{\partial^2 S}{\partial t^2} = \frac{1}{\rho} \frac{P(x) - P(x + \delta x)}{\delta x} = \frac{1}{\rho} \frac{\partial P}{\partial x} = \frac{B}{\rho} \frac{\partial^2 S}{\partial x^2}$

(3)P214 F98 Lecture 10 Wave Equation for Sound $\frac{\partial S}{\partial t^2} = \frac{B}{P} \frac{\partial S}{\partial x^2}$ Velocity of Sound in Air, 20°C = 343 m/s ~ 15 mile/ 5 What's the Pressure for Traveling Wave? $S(x,t) = S_{max} \cos\left(\frac{2\pi x}{x} - 2\pi ft\right)$ $P-P_0 = -B \frac{\partial S}{\partial x} = \frac{\partial \pi B}{\lambda} S_{max} \sin\left(\frac{2\pi x}{\lambda} - 2\pi ft\right)$ Pmax What's the Kinetic Energy Density? Kindor Energy - 2/M/2t = 2/25/2 Volume (V) = 2/27/2t) Potential Energy = Kinetic Energy for Travelling Wave Total Energy Demsity = P (25) = $\rho S_{max}^2 (2\pi f) sin^2 (\frac{2\pi x}{\lambda} - 2\pi f f)$

(4) P214 F98 Lecture 10 What's the Intensity of a traveling sound wave? $Tatensity = \frac{Power/Area}{F(Energy Density) \times Velocity}$ = $\rho \left(\frac{25}{2t}\right)^2 \sqrt{-2} = \rho \int B_{f} \left(\frac{25}{2t}\right)^2$ I = Top (25) = Jop (2TF) = smax sin 2 (2TTX - 2TFK) What's the Average Intensity? Useful Trick: Average of sin² is ½ Sin²+cos² = 1 average sin² = ½ Finteger average cos² = ½ Hot sin² MULLI sinzavery Average Intensity = JBp (2005)² Smax² (2)⁶ [Express in terms of Pmax] Units Intensity = Joules / sec per unit area = Watts/m² At 1000 Hz, you can hear $I_0 = 10^{-12} W/m^2 = 1 dB$ Corresponding to air displacing Smax = 10" m ~ 30 atom A power nower I = 10 - 2 W/m 2 = ten Giga (Io) ? (Use Log) $Decibels = \beta = 10 \log_{10}(T/T_{o})$ Lawn Mower = 10 To = 100 dB