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Ever since Newton, one of our primary jobs as scientists is to derive new laws. I’m
referring here not to new Laws of Physics, the basic underpinning laws governing time,
space, and matter∗: only a few get to discover or invent these. Rather, we routinely invent
physical laws with a small ell, governing the behavior of specific physical systems and
depending upon their individual characteristics.

These small-ell laws emerge from the more fundamental, complicated laws, as we take
certain limits and make use of conservation laws and small parameters. This is quite analo-
gous to the way non-relativistic quantum mechanics emerges from quantum electrodynam-
ics, which in turn emerges from various grand unified theories, one of which presumably
emerges from string theory: at low energies, low frequencies, and long wavelengths, simpler
theories emerge from more general but less useful ones. Christopher Henley, a colleague
of mine here, suggests that one should think of each new material or physical system as a
separate little universe with its own laws. We condensed-matter physicists get to play in
thousands of different universes, where the particle physicists and cosmologists are stuck
with studying just one.

We’ve had so much practise in inventing new theories that we’ve almost developed a
kind of recipe. I’m describing the recipe used by condensed-matter physicists, but rather
similar ones are used in various other fields of physics and engineering (using rather different
vocabulary). Our methods were first used to guess the physical laws for superconductors,
superfluids, and magnets by Landau, and were based on writing down the most general
allowed form of the energy of a system allowed by symmetry. Landau theory has remained
of great importance, but more recent work has started working not with the energy, but
with the dynamical laws of motion themselves. These approaches allow one to study
problems (like surface growth under atomic deposition, or crack growth) where energy
minimization isn’t the governing principle. We’ll focus on these newer approaches.

Recipe applied to the Wave Equation for a Stretched String.

You may have noticed that we’ve derived the wave equation in two different contexts –
transverse waves on strings and waves in air – and that the same wave equation also appears
to describe light waves, longitudinal waves on springs, torsional wave machines, and a host
of other systems. Doing a separate free-body diagram for each of these problems seems
tedious. Is it possible to derive all (or perhaps lots) of these equations in one fell swoop?
We’ll argue that wave equations show up in all of these systems because they share certain
symmetries, and that we can derive the wave equation – with a few assumptions and

∗ Or corresponding general laws of chemistry or economics.
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choices – just by using these symmetries and focusing on long wavelength, low frequency
behaviors. We break the problem up into several steps . . .

(1) Pick an Order Parameter Field.

The order parameter field is a local variable that determines the properties of importance
and interest for our system. For us, the vertical height η(x, t) of the string is the natural
order parameter.†

(2) Imagine the most general possible law.

For us, we want to know how η(x, t) evolves in time. We expect a local law, so the evolution
will involve η and various local slopes, velocities, and other derivatives. Whatever our
equation is, we can subtract the right-hand side from the left hand side and get something
of the form

F(η, x, t, ∂η/∂x, ∂η/∂t, ∂2η/∂x2, ∂2η/∂t2, ∂2η/∂x∂t, . . . , ∂7η/∂x3∂t4, . . .) = 0. (NL1)

Here F is some general, ugly, nonlinear function.

(3) Restrict attention to long length and time scales.

We are large and slow creatures. Only the long-wavelength oscillations of the strings are
low enough frequency for us to perceive: the vibrations with wavelengths comparable to
the width of the string, for example, aren’t really of much experimental interest.

This simplifies things a lot: the terms with high derivatives become small when you
look on long length and time scales. If the string is wiggling with a characteristic length
scale D, for example, the N th derivative ∂Nη/∂xN

∼ 1/DN . When the wavelength or
wiggle size D gets big, the derivative gets small and can be ignored (set to zero in F).

Exercise. Consider a sine wave η(x) of amplitude one and wavelength D. What is the
function η(x)? (Get the 2π’s correct!) What is its 400th derivative ∂400η/∂x400? Does it
go as 1/D400?∗

In our case, we’ll keep terms with up to two partial derivatives. The kind of effects we
lose with this approximation arise when wavelengths become comparable to the thickness
of the string. So far our emergent equation of motion is

F(η, x, t, ∂η/∂x, ∂η/∂t, ∂2η/∂x2, ∂2η/∂t2, ∂2η/∂x∂t) = 0. (NL2)

† It’s called the “order parameter” because it often describes a kind of spontaneously de-
veloped order – like the magnetization field in a magnet. The name isn’t really appropriate
for waves on strings.

∗ Hint: the 4th derivative of cos(θ) is cos(θ).
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(4) Identify the symmetries of the system.

Assume an infinite, stretched, horizontal string, in vacuum (no losses) and without gravity.
What symmetries does this system have? What do they imply about the solutions η(x, t)
of our equation of motion F = 0?

Continuous symmetries.

∆
(x,t)η(x,t)

η −∆(x     ,t)

η
∆

(x,t)η(x,t)

(x,t)η +∆

η

The physical system of a wave on a string is homogeneous in space (left) and
invariant under uniform vertical displacements (right).

Homogeneous (Translation along x). Our system is homogeneous in space: one part of the
string looks the same (and obeys the same equations) as any other part. (There are no
bulges, or knots, or changes in tension along the length of the string, for example.) Thus
the string must obey the same equations if we translate it sideways. Specifically, if η(x, t)
is a solution, so also must be η(x − ∆) for any shift ∆ to the right.‡

Time independent (Translation along t). Our system is time independent. (It wouldn’t
be, for example, if we applied a time-dependent force to it.) Thus if η(x, t) is a solution,
so also must be η(x, t − ∆) for any time shift ∆ forward in time.

Sideways motion: Translation along y. Our system is the same if we shift the string
vertically. Thus η(x, t) + ∆ must also be a solution.

Discrete symmetries.

Parity: Reflection along x. The string looks the same if one flips it end-for end (reflecting
through x = 0). If η(x, t) is a solution, the η(−x, t) must also be one.

Time-reversal invariance: Reflection along t. The (lossless) string looks the same if one
reverses the sign of time, so η(x,−t) must be a solution.

Inversion: Reflection along y. Inverting the string vertically is also a symmetry: −η(x, t)
is a solution.

‡ Obviously this messes up the boundary conditions, but we’ve assumed an infinite
string with no boundaries.
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The physical system of a wave on a string is invariant under reflections along x,
perpendicular to the string (flips, left) and under reflections along the vertical y
(inversions, right).

Our plan is now to generate the most general law of motion allowed by these symme-
tries, up to quadratic order in the gradients. If we do so, then there is an excellent chance
that any new system we come up with that has our symmetries will, on long length and
time scales, obey our law of motion.

(5) Apply the continuous symmetries.

The equation of motion F = 0 should have the same continuous symmetries as the physical
system has.

Sideways Motion. Let’s plug in η0(x, t) = η(x, t) + ∆ into our equation of motion – η
shifted vertically by ∆. We find that η0 is a solution if it satisfies F(η + ∆, x, t, ∂(η +
∆)/∂x, . . .) = 0. But ∆ drops out of all of the partial derivatives, so it’s a solution
if F(η + ∆, x, t, ∂η/∂x, . . .) = 0. Clearly, we want our ugly, nonlinear function to be
independent of the first argument (since adding any constant to the first argument doesn’t
affect the solutions)! So, because our system has a symmetry under sideways motion, we
can assume F is not explicitly dependent on x.∗

Homogeneous, Time Invariant. In a very similar way, we can show that F cannot explicitly
depend upon x or t. Consider η0(x, t) = η(x − ∆, t), shifting to the right by ∆. The
argument is a bit trickier, because F applied to η0 is the same as F applied to η not at
the same point, but at corresponding points. That is, x + ∆ for η0 corresponds to x for η,
so

F(η0(x + ∆, t), x + ∆, t, ∂η0(x + ∆, t)/∂x, . . .) = F(η(x, t), x, t, ∂η(x, t)/∂x, . . .).

But, of course, η0(x+δ, t) = η(x, t), so we find again F(η, x+∆, t, . . .) = F(η, x, t, . . .) and
so F can’t depend explicitly on x. Similarly, F can’t depend explicity on time, because
our system is time independent.

Our equation of motion has lost its first three arguments, and now simplifies to

F(∂η/∂x, ∂η/∂t, ∂2η/∂x2, ∂2η/∂t2, ∂2η/∂x∂t) = 0. (NL3)

∗ It can of course still depend on derivatives of η, which are unchanged by a constant
shift.
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(6) (Often) Assume that the order parameter is small.

We often may assume the order parameter is small, and keep only terms with low powers
of it. (This corresponds to the small angle approximation in our derivation of waves on
strings, and the assumption that the compressions ∆V

V
were small in the derivation for

sound waves.) In our case, we’ll keep terms only to linear order in η. This gives us a linear
equation with only seven unknown parameters A, B, C, D, E, F . . .

A + B∂η/∂x + C∂η/∂t + D∂2η/∂x2 + E∂2η/∂t2 + F∂2η/∂x∂t = 0. (NL4)

(7) Apply the discrete symmetries.

We argued that F must remain unchanged under continuous symmetries. For discrete
symmetries like reflection or time-reversal, though, we discover that we have a choice. F

may be unchanged under the symmetry, or it may change sign. (Since -0 = 0, the equation
F = 0 is still valid if F changes sign.) Let’s see how this plays out for each of the three
discrete symmetries.

Inversion: y → −y. Under this symmetry, η0(x, t) = −η(x, t). All terms linear in η in
equation (NL4) change sign (that is, all terms other than the constant term A). If we
decide to choose F to change sign under reflection, we must insist that A = 0; otherwise
we must choose all the other constants equal to zero. Let’s go with the first choice.† We
deduce that A = 0.

Flipping: x → −x. Under this symmetry, η0(x, t) = η(−x, t). It’s easy to see graphi-
cally that the slope (first partial derivatives η0 with respect to x) changes sign, but the
curvature (second partial derivative with respect to x) does not. Using the chain rule,

we see ∂η0

∂x
(x, t) = −

∂η
∂x

(−x, t), ∂η0

∂t
(x, t) = ∂η

∂t
(−x, t), ∂2η0

∂x2 (x, t) = ∂2η
∂x2 (−x, t), and so on.

Generally, terms odd in ∂/∂x change sign, and terms even stay unchanged. If we choose
F → F under flipping, we must set to zero the two terms odd in ∂/∂x, so B = F = 0

Time reversal: t → −t. Under this symmetry, η0(x, t) = η(x,−t). This implies that the
term odd in ∂/∂t vanishes, so C = 0 as above. We arrive at the following general equation

D∂2η/∂x2 + E∂2η/∂t2 = 0. (NL5)

so
∂2η/∂t2 = −D/E∂2η/∂x2. (NL6)

If we choose D/E < 0, we get the wave equation!

† If there is a system with our symmetries where F doesn’t change sign under y → −y,
it’s described by a nonlinear differential equation quadratic in η.
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