Eigenvectors, left and right

Non-symmetric and non-Hermitian matrices are weird.

- Left eigenvectors and right eigenvectors
- Right eigenvectors not orthonormal: coefs from left
- Many purposes better served by Singular values σ_n
 - Given by eigenvalues of $A^T A$: $\sigma = \sqrt{\lambda_{A^T A}}$
 - Generalizes eigs: for symmetric A, $\sigma_n = |\lambda_n|$
 - Also works for non-square matrices.
 - PCA, SVD numerical more stable, ...
- Markov equilibration rate \leq rate of slowest eig
 - $\rho_n \rho^* = \sum_{\alpha=1} \lambda_{\alpha}^n a_{\alpha} \rho_{\alpha} \gtrsim \lambda_1^n$ at long times
 - \bullet Can be longer. Markov chain $x \to x+1$ length N

$$\left(\begin{array}{ccccccccccc} 0 & 0 & 0 & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & & & \dots & \dots \\ 0 & 1 & 0 & & & \dots & \dots \\ \dots & 0 & 1 & 0 & & \dots & \dots \\ \dots & \dots & \dots & 0 & 1 & 0 & 0 \\ & & \dots & 0 & 1 & 1 \end{array}\right)$$

takes N steps to fall off cliff, but all eigenvalues are zero except bottom of cliff

• Left & right eigenvectors also important in renormalization group (Chapter 12).