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Open Book Exam. Work on your own for this exam. You may consult your notes,
homeworks and answer keys, books and published work, or Web pages as you find useful.
The problems have been designed to be doable given only material already presented in the
course. If you find something in the literature or on the Web that is particularly helpful (e.g.,
solves the problem), feel free to use it. However, just as in a publication, cite your source.

Some of the parts are as basic as they seem. Our goal here was to present deep and
powerful ideas in the simplest possible context.

Exercises (1-3 for everyone, 4-6 for 6562 only)

Everyone (4488 and 6562)
Questions 1-3

1. Crystal defects.1 ©i
This exercise numerically explores the wide variety of defects formed in crystals. You
will either need to be able to write on screenshots of the simulation (either electronically
or after printing), or will need to make careful sketches of what you see.

Start up the simulator [2], and select Crystal (one of the Initial Conditions choices
under the main simulator window). You should see a collection of atoms moving to
lower their energy, ‘quenching’ to a zero-temperature metastable state each time you
hit Restart.2 The system should settle into a mostly crystalline arrangement with a few
vacancies, dislocations, walls, and more complicated defects. The grayscale is a measure
of the stresses felt by the particles. The system has periodic boundary conditions, so
some defects will stretch past the left or bottom and emerge through the right or top.
Generate and admire the variety of defect patterns.

(a) Generate a large crystalline region. Take a snapshot and crop it to show the hexag-
onal crystal. Draw the three axes along which the crystal has closely-packed rows of
atoms. Regenerate other large crystal regions, and sketch the orientations of their axes
(no need for screenshots). Are the axis orientations different under different quenches?
Does the crystal spontaneously break orientational symmetry?

1This exercise uses the mosh pit simulator [2], developed to model humans dancing at heavy metal concerts:
see [1, 8, 9, 10].

2You can speed up the relaxation by increasing Frameskip to draw fewer of the steps. You can remove
the red ‘active’ particle by changing ‘Fraction Red’ to zero.
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(b) Generate and crop a simulation showing a vacancy – a missing atom in an otherwise
crystalline region.

These vacancies are often quite mobile in crystals (see Exercise 9.12). Their motion
allows the atoms in the crystal to diffuse (a vacancy hop to the left is an atom hop to
the right). Dopants and impurities can also use vacancies to diffuse through a crystal.

The regions of crystalline order are called grains, and two grains are separated by a
grain boundary. A grain boundary is usually a few atoms thick, separating two regions
of fairly undeformed hexagonal crystal with different orientations.

(c) Generate a grain boundary stretching across the simulation, separating two crystals
with different orientations. Draw their axes, and measure the misorientation angle –
the smallest rotation needed to take one set of crystalline axes to the other. What is
the largest misorientation angle possible in a hexagonal crystal?

The grain boundary is an orientational defect. It is not a topological defect, because
crystalline orientational order is a continuous symmetry – there are crystalline ground
states at all angles. Crystals respond to bending with an abrupt wall, rather than
with a gradual change in orientation; the translational crystalline order makes gradual
changes in orientation energetically expensive.

(d) Generate and crop a dislocation. Note that the dislocations in this simulation are
delocalized over a substantial distance along one of the crystal axes. Over roughly how
many particle diameters does it extend (as measured by a noticeable skewing of the
lattice hexagons, or by the stress measured as the grayscale coloring of the defects)?

Something similar happens in an extreme way in materials like copper, where a dislo-
cation can decompose into partial dislocations separated by a stacking fault.

The Burger’s vector ~b, by convention, is the displacement from the start to the end
of a path that travels equal numbers of rows of atoms in a clockwise path around the
defect.

(e) Find and indicate the direction and magnitude of the Burger’s vector of your dislo-
cation in part (d), by tracking the atomic layers along a curve encircling the defect. On
the square lattice (Fig. 9.11), the Burger’s vector was perpendicular to an extra row of
atoms that ended at the dislocation. How is this different from the atomic configuration
near your hexagonal-crystal dislocation?
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2. Unicycle. ©3
We model a person pedaling a unicycle as a three-state Markov chain (Fig. 1). Let the
three states of the Markov chain depict the pedal when the right foot is Up, Front, or
Back in the cycle, 120◦ apart. Please use the convention that the vector of probabilities

of her being in the three states is ρ =
(
ρU
ρF
ρB

)
. Assume she pedals steadily, at 120◦ per

time step, as shown by the arrows in Fig. 1.

(a) Write the Markov matrix P for a single time step. Find its eigenvalues and eigenvec-
tors. If she starts cycling in state U, how long will it take to reach a time-independent
steady state? Explain how this relates to the eigenvalues of P .

The Markov matrix for our unicycle in part (a) thus has a cycle (Section 8.2).

The Markov matrix is a linear evolution law for the probability distribution. Schrödinger’s
equation, the diffusion equation, and the wave equation are other examples of linear
systems. If a linear evolution law has a symmetry, then its solutions can be chosen from
the eigenstates of that symmetry operator (see Section A.4). All three of our other ex-
amples all have a translation invariance x → x + ∆, and thus have solutions of the
form fk(t) exp(ikx), where exp(ikx) for various k are the eigenstates of the translation
operator.

F

U

B

Fig. 1 Three–state unicycle.

(b) What symmetry does our unicycle Markov chain have? Show that your Markov
eigenstates are also eigenstates of the unicycle’s symmetry. Our three examples with
translation symmetry also have real (non-complex) solutions of the form f(t) sin(kx).
Can your eigenstates be combined into real solutions of this form? What extra sym-
metry possessed by these two systems above guarantees that they have sine and cosine
solutions?

Now our cyclist starts up a steep hill. With probability p she succeeds in pushing uphill
at each time step; with probability 1− p she stays in the same state.

(c) Write the transition matrix PHill. Does it have the same symmetry as P? What
are the new eigenvectors and eigenvalues? Will it approach a stationary state ρ∗ as
time goes to infinity? (Solving for the motion is not an efficient method for deriving
the answer.) Does PHill satisfy detailed balance? Why or why not?
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Our probability distribution may be in a stationary state, but our cyclist is not – she
is moving uphill, doing work. A Markov chain satisfying detailed balance evolves into
a statistical mechanical equilibrium state (Exercise 8.12) that can do no work. One
might think that the converse is true: if the steady state has a net flow of probability
between two states, one could extract work from the imbalance in the transitions as
one might use a paddle wheel in flowing water to make electricity or mill grain. But
magnetic fields and such can break detailed balance (Exercise 9.13) without allowing
work to be done in equilibrium.
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3. Pandemic.3 ©3
Perhaps the most substantive contribution to public health provided by physics is the
application of statistical mechanics ideas to model disease propagation. In this exer-
cise, we shall introduce a few categories of epidemiological models, discuss how they
can inspire and inform public health strategies (once adapted to real-world data), and
then study one model as a continuous phase transition. You should leave this exercise
empowered to think about the public health responses and modeling of potential pan-
demics – Ebola, SARS, and now COVID-19. Perhaps a few of us will contribute to the
field.

Pandemics can undergo a phase transition. For diseases like measles, a single contagious
child in an environment where nobody is immune will infect between twelve and eighteen
people before recovering, depending on details like population density. For influenza,
this number is around two to three. We define the ‘basic reproduction number’ R0 to
be the ratio of infected people per contagious person in a fully susceptible community:
12–18 for measles, 2–3 for influenza. For a new pathogen, where nobody is immune,
R0 < 1 will mean that an outbreak will eventually die out, and R0 > 1 means that
a large initial outbreak will spread globally until reaching a significant fraction of the
entire population. Much effort is spent during a pandemic to lower R0 into the safe
range.

This transition is a continuous phase transition, with fluctuations on all scales near the
critical threshold R0 = 1. In this exercise, you will briefly consider three types of epi-
demic models (compartmental models, network models, and lattice models), compare
different social interventions designed to lower R0, and explore the fluctuations and
critical behavior very close to threshold.

Compartmental models use coupled differential equations to model the disease spread
between different ‘compartments’ of the population. The classic SIR model (see Exer-
cise 6.25) involves three coupled compartments,

dS

dt
= −βIS, dI

dt
= βIS − γI, dR

dt
= γI, (1)

where S(t), I(t), and R(t) are the proportions of the population that are susceptible,
infected, and recovered. The parameter β measures the rate of infection spreading
contact between people and γ is the rate at which people recover.

Network models treat people as nodes, connected to their contacts with edges. They
assume a transmissibility T , the average probability that a victim will infect each of
their contacts. For low T the epidemics die out; there will be a critical Tc above
which a large outbreak will continue to grow exponentially. There are a variety of
networks studied: fully connected networks (where SIR models become valid), loopless
branching tree networks where everyone has k neighbors, real-world networks gleaned

3This exercise was developed in collaboration with David Hathcock. Computer hints can be found at the
book Web site [7].
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from data on households and school attendance [4], and scale-free networks with a
power-law distribution p(k) ∝ k−α for the probability that a person has k contacts
(has degree k). (Scale-free networks have been found to approximate the pattern of
interactions between proteins in cells and nodes on the Internet, and serve as our model
for populations with wide variation in the number of social contacts with potential for
disease transmission.)

Lattice models – networks in two dimensions where only near neighbors are contacts –
are sometimes used in agricultural settings, where the plant victims are immobile and
the disease is spread only by direct proximity.

(a) Write R0 for the SIR model in terms of β and γ, for an initially nearly uninfected
population (S ≈ 1 and I � 1).

Network models usually ignore the long-range correlations between nodes: except for
real-world networks, the contacts are usually picked at random so there are very few
short loops. In that limit, Meyers et al. [4] express R0 in terms of the moments 〈kn〉 =∑
knp(k) of the degree distribution, which they solve for using generating functions

(see Exercise 2.23):

R0 = T

(
〈k2〉
〈k〉
− 1

)
. (2)

People like nurses and extroverts with a lot of contacts can act as ‘super-spreaders’,
infecting large numbers of colleagues. Scale-free networks explore what happens with
a range of contacts: the smaller the exponent α, the larger the range of variation.

(b) What is the critical transmissibility Tc predicted by the network model in eqn 2?
Show that, for a scale-free network with α ≤ 3 the critical transmissibility Tc = 0; no
matter how unlikely a contact will cause disease spread, there are rare individuals with
so many contacts that they (on average) will cause exponential growth of the pathogen.
If our population had α = 3, what percentage of the people would we need to vaccinate
to immunize everyone with more than 100 contacts? What would the resulting Tc, the
maximum safe transmissibility, be? (If you find that the first percentage is small, use
that fact to simplify your calculation of Tc. Hint:

∑∞
1 k−z = ζ(z), the Riemann zeta

function, which diverges at z = 1.)

An important limitation of these network results is that they assume the population
is structureless: apart from the degree distribution, the network is completely random.
This is not the case in a 2D square lattice, for example. It has degree distribution
pk = δk,4, but connections between nodes are defined by the lattice, and not randomly
assigned. As you might expect, disease spread is closely related to percolation. In
the mean-field theory, percolation predicts that the epidemic size distribution expo-
nent is τ = 3/2 = 1.5; you will explore this in parts (e) and (f). In 2D, the lattice
structure changes the universality class, the epidemic sizes are given by the cluster-size
distribution exponent τ = 187/91 ≈ 2.055.

Besides exhibiting different power-law scaling, the value of the critical transmissibility
can be quite different in structured populations.
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(c) What is Tc for a tree with k = 4 branches at each node (so p(k) = δk,4)? Compare
that to the critical transmissibility for a 2D square lattice, Tc = 0.5384 [11]. Which is
more resistant to disease spread?

One might imagine that a lattice model would mimic the effect of travel restrictions
to prevent disease spread. Travel restrictions reduce the contact numbers, but do
not change the qualitative behavior. This is due to the ‘small world phenomenon’: a
surprisingly small number of long-range contacts can change the qualitative behavior
of a network (see Exercise 1.7). Only a few long-distance travelers are needed to make
our world well connected.

Finally, let us numerically explore the fluctuations and scaling behavior exhibited by
epidemics at their critical points. We shall assume (correctly) that our population is
well connected. We shall also assume that our population does not have system-scale
heterogeneities: we ignore cities, subpopulations of vulnerable and crowded people, and
events like the Olympics. Given these assumptions, one can argue that the qualitative
behavior near enough to the critical point R0 = 1 is universal, and controlled not by
the details of the network or SIR model but only by the distance 1−R0 to the critical
point.

Let us organize our victims in ‘generations’ of infected people, with In+1 the number
of victims infected by the In people in generation n; we shall view the generation as
roughly corresponding to the time evolution of the pandemic. The mean 〈In+1〉 = R0 In,
but it will fluctuate about that value with a Poisson distribution, so In+1 is a random
integer chosen from a Poisson distribution with mean R0 In.

(d) Write a routine pandemicInstance, that returns the evolution vector [I0, I1 . . . In . . . ]
and the total size S =

∑
n In. Iterate your routine with with R0 = 0.9999 and I0 = 1

in a loop until you find an epidemic with size S ≥ 105. Plot the trajectory of this
epidemic, In vs. n. Does your epidemic nearly halt during the time interval? Do the
pieces of the epidemic before and after this near halt appear statistically similar to the
entire epidemic?

One might presume that these large fluctuations could pose a real challenge to guessing
whether social policies designed to suppress a growing pandemic are working. We must
note, however, that the fluctuations are important only near R0 = 1, or when the
infected population becomes small.

At R0 = 1, the size of the epidemic S has a power-law probability density P (S) ∝ S−τ

for large avalanches S.

(e) Write a routine pandemicEnsemble that does not store the trajectory, but instead
runs N epidemics at a given value of R0, and returns a list of their sizes. Plot a
histogram of the sizes of 104 epidemics with R0 = 0.99, with, say, 100 bins.

Regular histograms here are not useful; our distribution has a long but important tail
of large events. Most epidemics subside quickly at this value of R0, but a few last for
hundreds of generations and infect tens of thousands of people. We need to convert to
logarithmic binning.
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(f) Change the bins used in your histogram to increase logarithmically, and be sure to
normalize so that the counts are divided by the bin ‘width’ (the number of integers in
that bin) and the number of epidemics being counted. Present the distribution of sizes
for 104 epidemics at R0 = 0.99 on log-log plots. On the same plot, show the power-law
prediction τ = 3/2 at the critical point.

In Exercise 12.28 we derived the universal scaling form for the avalanche size distri-
bution in the random-field Ising model. This calculation also applies to our pandemic
model. It predicts that the probability P (S) of an epidemic of size S for small distances
r = (1−R0) below the critical point is given by

P (S) = CS−3/2e−Sr
2/2, (3)

where the nonuniversal constant C is around 0.4 to 0.5 (depending on the small S
cutoff). Note that this gives the predicted power law τ = 3/2, and is cut off above a
typical size that grows quadratically in 1/r.

(g) Multiply your data by S3/2 to make it near constant for small sizes. Plot it and the
scaling prediction (eqn 3) on a log-log plot. Does the universal scaling function describe
your simulated epidemic ensemble?

The tools we learn in statistical mechanics – generating functions, universality, power
laws, and scaling functions – make tangible predictions for practical models of disease
propagation. They work best in the region of greatest societal importance R0 ≈ 1,
where costly efforts to contain the pandemic are minimized while avoiding uncontrolled
growth.
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Graduate (6562 only)
Questions 4 - 6

Warning: the version of exercise 4 in the text until recently was quite different.

5. Telegraph noise in nanojunctions. (Condensed matter) ©3
Many systems in physics exhibit telegraph noise, hopping between two states at random
intervals (like a telegraph key going on and then off at different intervals for dots and
dashes). The nanojunction in Fig. 2 has two states, α and β. It makes transitions at
random, with rate Γβ←α = Γβα from α to β and rate Γαβ from β to α.

Time

R
e
s
is

ta
n
c
e

Fig. 2 Telegraph noise in a metallic nanojunction. Resistance versus time R(t) for a
copper constriction, from [6]. We label α the state with low resistance Rα, and β the state
with high resistance Rβ. The two states probably represent a local shift of an atom or a
small group of atoms in the constriction from one metastable state to another.

Master equation. Consider an ensemble of many identical copies of this system. Let
the state of this ensemble at time t be given by ρ(t) = (ρα, ρβ), a vector of probabilities
that the system is in the two states. This vector thus evolves according to the master
equation

dρ/dt = M · ρ. (4)

(a) What is the 2 × 2 matrix M for our system, in terms of Γαβ and Γβα? At long
times, when the system is in a stationary ensemble ρ∗, what fraction of the time ρ∗α will
our system be in the α state? (Notice that, unlike the Markov chains in Section 8.2,
we now evolve continuously in time (making this a Markov process). Remember also
that Γαβ increases ρα and decreases ρβ.)

(b) Find the eigenvalue-eigenvector pairs for M .4 Which eigenvector corresponds to
the stationary state ρ∗ from part (a)? Suppose that at t = 0 the system is known to be
in the α = 1 state, ρ(0) = ( 1

0 ). Write this initial condition in the basis of eigenvectors,
and hence give a formula for the subsequent time evolution ρ(t). What is the rate of
decay to the stationary state?

Let us define the Green’s function Gδγ(τ) to be the probability of being in the δ state

at time t+τ , given that it is in the γ state at time t. Thus in part (b), ρ(t) =
(
Gαα(t)
Gβα(t)

)
.

(c) Solve for G(τ). Check that (i) probability is conserved,
∑

δ Gδγ(τ) = 1; (ii) evolution
for zero time does not change the state, Gδγ(0) = δδγ; (iii) the stationary state is
stationary

∑
γ Gδγ(τ)ρ∗γ = ρ∗δ; and (iv) the evolution goes at late times to the stationary

state, independent of where it starts: Gδγ(t)→ 〈ρ∗δ〉 as t→∞.

4More specifically, the right eigenvectors M · ρλ = λρλ.
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Let R(t) be the resistance as a function of time, hopping between Rα and Rβ, as shown
in Fig. 2, and let R be the time average of the resistance. In analogy to eqn 10.19 for
equilibrium systems, the connected correlation function for the resistance fluctuations
can be written as

C(τ) =
〈
(R(t+ τ)−R)(R(t)−R)

〉
ev

=
〈
(R(τ)−R)(R(0)−R)

〉
ev

(5)

=
〈

([R(τ)]γ −R)(Rγ −R)
〉
eq
.

in the (daunting) notation for different ensembles used in Section 10.4. Here [R(τ)]γ is
the noise average of R(τ) given initial state γ.

(d) Argue directly that

C(τ) =
∑
γ,δ

Gδγ(τ)(Rδ −R)(Rγ −R)ρ∗γ. (6)

Calculate [R(τ)]γ in terms of G; use it and conservation of probability (part (c)) to
derive eqn 6 from the last line of eqn 5.

R
e
s
is
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n

c
e

Time

Fig. 3 Telegraph noise with three metastable states, from [5].

Nanojunctions, especially at higher temperatures, often show more than two metastable
states in the experimental bandwidth.5 Usually these form independent two-level fluc-
tuators (atomic rearrangements too far apart to interact substantially), but sometimes
more complex behavior is seen. Figure 3 shows three resistance states, which we label
α, β, and γ from lowest resistance to highest. We notice from Fig. 3 that the rates Γγβ
and Γβγ are the highest, followed by the rates Γαγ and Γγα. There are no transitions
seen going between states α and β.

There is a large current flowing through the nanojunction, allowing the resistance to
be measured. Whether these transitions are equilibrium fluctuations, perhaps with a
field-dependent effective temperature, or whether they are non-equilibrium transitions
mostly induced by the external current, could be tested if these last two rates could be
measured. If detailed balance is violated, the system is out of equilibrium.

(e) Detailed balance. Approximate the master equation rates Γαβ as a discrete-time
Markov chain with a tiny step ∆t and transition matrix P : Pαβ ≈ exp(Γαβ∆t). What
does the cyclic detailed balance condition (eqn 8.22) imply about the rates Γ? Assum-
ing that the system satisfies detailed balance, what is the difference between the two
unmeasured rates Γαβ and Γβα in terms of the other four rates?

5A junction is outside the bandwidth if it fluctuates either too fast or too slowly to measure with the
experimental set-up.
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6. Entanglement of two spins.6 (Quantum) ©3
How does entropy increase in a quantum system? The typical way is through the loss
of coherence – information lost to the environment (Exercise 7.25). A measurement
through an operator O can cause a pure state wavefunction (entropy zero) to split into
an ensemble7 of eigenstates of O (entropy −kB

∑
o |co|2 log |co|2). Here we focus on a

different mechanism; Entropy can increase when we ignore or throw away information.
In this exercise, we will concentrate on a quantum system with two spins, an example
of entanglement and entropy. In Exercise 7 we shall discuss the entanglement of larger
systems, and explore both entanglement entropy and eigenstate thermalization.

Consider first the spin singlet8 state of positronium: an electron-positron pair with
opposite spins in an antisymmetric spin wave function

(1/
√

2) (|↑e〉|↓p〉 − |↓e〉|↑p〉) . (7)

(a) What is the entropy of this spin singlet wavefunction?

What happens if we separate the two particles with an electric field (without disturbing
their spins), and throw away9 the electron?

To study this, we introduce the reduced density matrix. Suppose ρ is the density matrix
of a system composed of two subsystems A andB with bases {|ψa〉} and {|φb〉}. Suppose
we consider experiments solely involving A (since we are ignoring B or have thrown
it away). Then these experiments will involve observables O that do not act on the
variables in B, so O|φb〉 = |φb〉O and 〈φb|O = O〈φb|. We can write the expectation
value of O in terms of the density matrix for the entire system with the usual trace

Tra,b(Oρ) =
∑
a,b

〈ψa|〈φb|Oρ|φb〉|ψa〉

=
∑
a

〈ψa|O

(∑
b

〈φb|ρ|φb〉

)
|ψa〉

= TraOρ
[A],

(8)

where the reduced density matrix

ρ[A] =
∑
b

〈φb|ρ|φb〉 (9)

6This exercise was developed in collaboration with Jaron Kent-Dobias. Computer hints can be found at
the book Web site [7].

7Exercise 7.25 describes microscopically how this arises; the wavefunctions of the environment split into
pieces for each possible observation that differ so much that no operator can connect them.

8This is a classic system for exhibiting ‘spooky action at a distance’ and disproving hidden variables
theories [3, III.18-3].

9Or, more realistically, what happens if we let the positronium decay into two photons of correlated
polarization, and let one escape into outer space [3, III.18-3].
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is the trace over the basis states in B. The reduced density matrix is thus a partial
trace. Indeed, one often talks of partial traces in classical systems where one has
integrated out over some degrees of freedom to get an effective free energy (see note 5
on page 141).

(b) Calculate the reduced density matrix ρP for the positron portion of the spin-singlet
wavefunction of eqn 7, which can be used to describe subsequent experiments on the
positron not involving the electron. Show your steps. What is the entropy if we ignore
or discard the electron?

(c) Now consider the positronium in a triplet state |↑p〉|↑e〉. After discarding the elec-
tron, what is its entropy?

We say that the singlet state is entangled, while the triplet state is not. Some speculate
the growth of quantum entanglement with time is equivalent to the growth of entropy
with time; that all loss of information rests upon quantum entanglement with unob-
servable degrees of freedom (either information escaping to far places as in part (b), or
information escaping into many-body correlations in quantum wavefunctions of macro-
scopic objects, as in Exercise 7.25). This speculation would seem at odds, however, with
the observation that chaotic classical systems also lose information and have entropies
that grow with time.
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7. Heisenberg entanglement.10 (Quantum) ©3
Here we introduce the quantum Heisenberg antiferromagnet, and use it to explore how
entropy, temperature, and equilibration can emerge through the entanglement of two
portions of a large system – closely related to the eigenstate thermalization hypothesis
(see Exercise 7.17). We saw in Exercise 6 that ignoring part of a system can take
a quantum pure state into a mixture of states on the remaining subsystem. This
should remind you of the way we derived the canonical ensemble by splitting a system
in the microcanonical ensemble into a subsystem and a bath, and ignoring the bath
(Section 6.1, Fig. 6.1). We can make this analogy much more powerful by using a larger
quantum system, here a one-dimensional chain of spin 1/2 particles.

The one-dimensional Heisenberg antiferromagnet has Hamiltonian

HNspins
=

Nspins−1∑
m=1

Sm · Sm+1, (10)

where we have set the strength of the coupling J to 1 – positive, and hence favoring
antiparallel spins. Here the quantum spins S = (σX , σY , σZ) have spin 1/2, and are
written in terms of the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(11)

Let us begin with an analytical calculation of the Hamiltonian and the eigenstates for
Nspins = 2, considered already in Exercise 6. We work in the four-dimensional σz basis

|↑1〉|↑2〉
|↑1〉|↓2〉
|↓1〉|↑2〉
|↓1〉|↓2〉

 . (12)

(a) Show analytically that

H2 =


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 . (13)

Find the eigenvalues and eigenstates for this Hamiltonian. Is the ground state the
triplet or the singlet? Does this make sense for an antiferromagnet? (Hint: The spin
S1 commutes with the kets |↑2〉 and |↓2〉 and vice-versa. The tensor discussion below
may also be helpful.)

10This exercise was developed in collaboration with Jaron Kent-Dobias. Computer hints can be found at
the book Web site [7].
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Implementing this calculation elegantly on the computer demands that we understand
how the single-spin σ operators and the dot product Sm ·Sm+1 act on the entire 2Nspins-
dimensional Hilbert space. The fact that they commute with the parts of the wave-
function that only involves other spins says that they act as identity matrices on those
parts of the Hilbert space. That is, σx[1] for the first spin needs to be promoted to
σx[1]⊗12

Nspins−1 , and σx[2] for the second needs to be turned into 12⊗σx[1]⊗12
Nspins−2 ,

. . .

(b) Implement this numerically for the two-spin system. Calculate the Heisenberg
Hamiltonian, and verify the answer of part (a). (Hint: Many modern program-
ming languages have support for tensor data structures. These efficient routines will
be important in later steps, so use them here.11 See the hints files at [7].)

In this exercise, we shall discuss how pure energy eigenstates states in a system AB
become mixed states when we split the system into a subsystem A and a bath B, and
study the properties of these mixed states. We shall index operators acting on the
subsystem A with Latin letters i, j, operators on the bath B with Greek letters α, β,
and operators on the total system AB with capital letters I, J , or sometimes with pairs
of indices iα, jβ.

(c) If ρiα,jβ is the density matrix for the whole system AB, show analytically that the
sum

∑
α ρiαjα gives the reduced density matrix for the subsystem (e.g., as defined in

Exercise 6).

We can use the two-spin problem of part (a) to preview the rest of the exercise, in a
context where you know the answer from Exercise 6. Here we view the first spin as the
the ‘subsystem’ A, and the second spin as the ‘bath’ B.

(d) Select the singlet eigenstate, and normalize it if necessary. Generate the pure-state
density matrix, and reshape it into the four index tensor ρiα,jβ. Trace over the bath as
in part (c), and verify that the reduced density matrix ρAij describes an unpolarized spin.
Calculate the entropy by taking the suitable matrix trace.

To generate the Heisenberg Hamiltonian for multiple spins, we can save steps by noting
that we already know the Hamiltonian for two spins from eqn 13 So the term Sm ·Sm+1

in eqn 10 becomes12

12m−1 ⊗H2 ⊗ 1
2
Nspins−(m+1) (14)

(e) Use this to write a function that returns the Heisenberg Hamiltonian HNspins
(eqn 10)

as a 2Nspins × 2Nspins matrix. Check, for Nspins = 2 it returns H2 (eqn 13). Check
also for Nspins = 3 its eigenvalues are (−4,−4, 2, 2, 2, 2, 0, 0), and for Nspins = 4
that its distinct eigenvalues are {−3− 2

√
3,−1− 2

√
2, 3,−1 + 2

√
2,−1,−3 + 2

√
3} ≈

{−6.46,−3.8, 3, 1.8,−1, 0.46}.
11One subtle point. In combining an operator Lij acting on subsystem A with Mαβ acting on subsystem

B, we want an operator O which labels rows using iα and columns with jβ Oiα jβ . We can then use O as a
two-index matrix to compute eigenvectors and eigenvalues. In some implementations, this demands that we
swap the two inner axes of the naive product LijMαβ .

12In the C and Python convention where indices start with zero, this would be 12m ⊗H2 ⊗ 1
2Nspins−(m+2) .
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We shall work with a system of Nspins = NAB = 10 spins in the chain; we shall primarily
study a subsystem with NA = 4 spins, so the bath has NB = NAB −NA = 6 spins. We
shall use a particular eigenstate ψ of HNAB in a sequence of four steps: (i) to calculate
the reduced density matrix ρA for NA, (ii) to investigate the entanglement between
A and the bath B, (iii) to calculate the entanglement entropy, and (iv) to illustrate
eigenstate thermalization. For the last, we want to choose ψ with an energy that is
lower than average, but not near zero.

(f) Create HAB = H10. Find its energy eigenvalues and eigenstates, and (if necessary)
sort them in increasing order of their energy. Pick the energy eigenstate ψ of the full
system that is 1/4 the way from the bottom (the K = 2NAB−3 entry). Calculate the pure
density matrix ρpure, reshape it into the four index tensor ρAB

iα,jβ, and trace over the bath
to give the reduced density matrix ρAij. Check that ρA has trace one (as it must), and
calculate Tr[(ρA)2]. Is it is a mixed state?

The entanglement entropy between A and B for a pure state ψ of AB is the entropy
of the reduced density matrix of A.

(g) Calculate the entanglement entropy S = −TrρA logρA.13 Check that it has the same
entropy as subsystem B. See how the entanglement entropy changes with the size of
the subsystem, by looping over NA from zero to NAB. Plot S as a function of NA for
our particular eigenstate ψ. Where is the entanglement entropy largest? Explain why
it goes to zero for the two endpoints.

The term ‘entanglement’ sounds mutual; A and B are entangled together, rather than
the bath B has perturbed A. This nomenclature is not an accident. As you checked
numerically, the entanglement entropies of the two subsystems is the same, as can be
shown using the Schmidt decomposition (not described here).

In statistical mechanics, a large ergodic system AB in the microcanonical ensemble at
energy E, when restricted to a relatively small subsystem A, will generate an equilib-
rium thermal ensemble at the corresponding temperature. The eigenstate thermaliza-
tion hypothesis says that many systems14 take this to an extreme: for each eigenstate
ψ, the reduced density matrix ρA of the subsystem will converge to a Boltzmann equi-
librium thermal ensemble

ρβjk = δjke
−βEAk

/∑
`

e−βE
A
` (15)

as the system size goes to infinity.

13Note: ρA will have some zero eigenvalues, which may confuse a matrix logarithm. Remember that
diagonalizing ρ also diagonalizes log ρ, and the trace is invariant under a change of basis. Hence, you can
define your own function pLogp which returns zero if p ≤ 0 and p log p otherwise, and sum it over the
eigenvalues of ρA.

14Systems exhibiting, for example, many-body localization (of considerable current interest) do not exhibit
eigenstate thermalization.
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Let us calculate the probability pk that our subsystem is in eigenstate ψAk , pk =
Tr(|ψAk 〉〈ψAk |ρA). We are simulating a rather small system, so fluctuations will be
large.

(h) Make a log plot of pk vs. EA
k . Do a fit to the predicted form eqn 15 to find β, and

plot the result with your data.

In particular, the reduced density matrix is predicted to be at the temperature of the
microcanonical ensemble at the energy E of the original pure state ψ.

(i) Write a function EbarAB(β) returning the average energy of the entire system as a
function of β. Take a sampling of eigenstates ψK of the total system, fit pk vs EA

k as
in part (h), and plot β vs. E along with your prediction β(EbarAB). Do you achieve a
rough agreement?
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