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Open Book Exam. Work on your own for this exam. You may consult your notes,
homeworks and answer keys, books and published work, or Web pages as you find useful.
The problems have been designed to be doable given only material already presented in the
course. If you find something in the literature or on the Web that is particularly helpful (e.g.,
solves the problem), feel free to use it. However, just as in a publication, cite your source.

Some of the parts are as basic as they seem. Our goal here was to present deep
and powerful ideas in the simplest possible context.

Exercises
Everyone (4488 and 6562)

1. Pendulum energy shell. ©3
In this exercise, we shall explain why we focus not on the surface of constant energy in
phase space, but rather the energy shell. As noted in Fig. 3.1, the energy shell in phase
space will typically vary in thickness – causing the microcanonical average to weigh
thick regions of the energy surface more heavily than thin regions. (The hyperspheres
of the ideal gas are not typical energy shells!) Here we show, for the pendulum, that
this weighting by thickness is physically correct.

Figure 1 shows the phase space of the pendulum with Hamiltonian

H = p2/2m`2 +mg`(1− cos(θ))

= p2/2 + (1− cos(θ)),
(1)

setting mg` = m`2 = 1. The inner grey ring is an energy shell at a relatively low
energy, and the outer ring is at a higher energy where the anharmonic terms in the
potential energy are strong.

(a) Why is the inner energy shell roughly circular? For the outer shell, at about what
position and momentum is our pendulum at the thinnest point? The thickest? Note
that the outer shell comes close to E = 2. What changes topologically in the energy
surface at E = 2? Describe physically how our pendulum motion alters when E crosses
two.
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Fig. 1 Pendulum energy shells. Two energy shells for the pendulum of eqn 1. Both are
of thickness δE = 0.1; the inner one spans from E1 = 1/2 to E1 + δE = 0.6, the second spans
from E2 = 1.88 to 1.98.

In statistical mechanics, we average observables over the energy shell to get typical
behaviors. In particular, we show in Chapter 4 that time averages for a typical initial
condition are given by averages over the energy surface. Is the varying thickness of the
energy shell important for getting the correct energy-shell average?

(b) Does the pendulum spend extra phase-space time in the regions where the outer
energy shell from Fig. 1 is thickest? Explain clearly why you say so. Make sure you
explain physically how the two energy shells differ in this regard.

One can use Hamilton’s equations 4.1 to show the thickness precisely works to give the
correct average in a general Hamiltonian system. Let us check this explicitly for the
pendulum.

First calculate the time average. Let us parameterize the phase-space curve of constant
energy by its arclength1 s, where ds =

√
dp2 + dθ2.

(c) Argue that the time average of an operator over a period T ,

〈O〉t = 1/T

∫ T

0

dt O(p(t), θ(t)), (2)

equals the weighted average

1/T

∫
ds

|v|
O(p(s), θ(s)), (3)

where v = (ṗ, θ̇) is the phase-space velocity around the trajectory. Does |v| vary signif-
icantly around the inner energy shell in Fig. 1?

Next calculate the average over the energy surface.

(d) Argue that the thickness of the energy shell at a point (p, θ) is given by δE/|∇H|,
where ∇H = (∂H/∂p, ∂H/∂θ). (Do not use Hamilton’s equations yet.) Use eqns 3.5

1One may note that the units of position and momentum are different! Indeed, there is no natural metric
in phase space. Our exercise illustrates a particular case using a convenient set of units (eqn 1). The general
case is the focus of Chapter 4.
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and 3.6 to argue that the microcanonical average of an operator O acting on the pen-
dulum is

〈O〉MC =

∫
ds

|∇H|
O(p(s), θ(s))

/∫
ds

|∇H|
. (4)

Now we explicitly relate the phase-space velocity v to the gradient ∇H.

(e) What is the gradient ∇H for our pendulum, in terms of p and θ? Does it agree with
v? Do the lengths |∇H| and |v| agree? Use Hamilton’s equations of motion (eqns 4.1)
to check that this also holds for a general Hamiltonian system.

(f) Using your results above, show that 〈O〉t = 〈O〉MC for our pendulum.
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Everyone (4488 and 6562)

2. Active matter.2 Active matter ©3
‘Active matter’ is a growing field of statistical mechanics – the description of emergent
behavior from systems of self-propelled ‘agents’ that maintain themselves out of ther-
mal equilibrium. Applications include flocking birds, schools of fish, collective motion
of bacterial colonies, manufactured self-propelled colloidal particles, and bio-polymers
like microtubules and actin which actively grow and (together with protein molecular
motors) can exert forces and move around. Use the exercise as a motivation to also
explore the excellent videos and simulations on the Web in this field.

This exercise leverages an active-matter simulation of humans at heavy metal concerts,
where loud, fast music, flashing lights, and intoxication lead to segregated regions
known as mosh pits where participants engage in violent collisional behavior [7, 9, 8, 1].
Here we shall use the simulation to explore both equilibrium behavior and two active
matter systems: flocking and self-propelled particles. We shall view the simulator as a
kind of experimental system. We shall explore how the system responds to changing
the control parameters, and investigate the emergent behavior in different regimes.

First explore the moshpit simulator [2].3 The simulation has two types of agents –
active (red) and passive (black); both interact via a soft repulsive potential, and have
a damping force −µv to absorb kinetic energy. The passive agents prefer to remain
stationary, but the active agents are subject to several other types of forces: noise,
‘flocking’, and ‘speed’. In this exercise, we shall explore only the active agents (setting
‘Fraction Red’ to one).

We shall see in later parts that flocking and speed lead to systems that remain out
of thermal equilibrium. For the first three parts we shall explore whether noise and
damping instead favor equilibration.

Return the simulation to its Moshpit defaults by reloading the page. Turn all the agents
active (Fraction Red to 1), and reduce their number N to 100 (set Particle count and
click Change). Set flocking and speed parameters to zero, the damping to 0.05 and the
noise to 0.2 (discussed below), and Change. Verify that the the particles are moving in
noisy paths between collisions. Adjust the number of frames skipped to speed up the
visualization.

The noise and damping implement Langevin dynamics, used for finite-temperature
simulations of traditional equilibrium systems. Noise adds an uncorrelated stochastic
force η(t) at tn = n∆t with 〈ηα(ti)ηβ(tj)〉 = σ2δijδαβ. This noise might represent the
agitation of our agents, who randomly thrash around – or it could represent equilibrium
buffeting of red pollen grains by surrounding water molecules. In Exercise 10.7, we

2This exercise was developed in collaboration with David Hathcock. It makes use of the mosh pit simu-
lator [2] developed by Matt Bierbaum in [9].

3The current version of the software sometimes stops responding to the user interface. It seems to be
more reliable on computers than on phones and tablets; reducing the number of agents may help.
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argued that this dynamics could lead to a thermal distribution for the momentum of
one particle.

In the first part, we shall check whether our system exhibits a speed distribution com-
patible with equilibrium statistical mechanics. Return to the settings above (reload,
all active, N=100, flocking=speed=0, damping=0.05, noise=0.2, and Change). Show
the graph of the speed histogram for the particles.4

(a) Examine the shape of the distribution of speeds ρ(s) for the particles. Derive what the
probability distributions of speeds should take for an equilibrium thermal ensemble, and
show your work. Does your prediction roughly agree with the speed histogram shown?
What qualitative features of the observed distribution does your prediction explain that
a Gaussian distribution or the traditional Maxwellian distribution (eqn 1.2) cannot?

Langevin dynamics uses the balance between damping and noise to maintain a constant
temperature. Exercise 6.18 derives the well known relation kBT = σ2/(2µ∆t) (which
in turn is related to the fluctuation–dissipation theorem, see Exercise 10.7). But per-
haps our definitions of σ and µ differ from the adjustable parameters ‘Noise strength’,
‘Damping’ used in the simulation (which may differ from the σ and µ in the paper).

In the guise of an experimentalists probing the effects of different controls, we shall in
the next part check our formula by observing how the speed distribution changes as we
change parameters. Return to the settings above.

(b) How much should the speeds increase if we quadruple σ? How much should they
change if we quadruple µ? Double ∆t? Make a table of the measurements you take to
check whether these three variables correspond directly to the three experimental controls.
(Measuring the peak of a distribution is noisy; try time-averaging the point where the
distribution crosses half of the peak value. I used a ruler placed against the screen. Pick
values of the parameters allowing for good measurements. If you are really ambitious,
you can examine the source Javascript code on github.)

In the third part, we shall explore what happens to the speed distribution when the
interactions between particles becomes strong.

Return to the settings above.

(c) Alter the number of particles to 350, where the density is typical of a liquid. Does the
final distribution of speeds change from that at lower density? Alter it to 500. Does the
distribution change in the crystal formed at this density? Is this a surprise? Explain.

Let us now depart from equilibrium physics, and begin exploring active matter.

Boids may have started the field of active matter. A model for the flocking of birds,
boids obey slightly complicated rules to avoid collisions, form groups, and aligning their
velocities with their neighbors.

(d) Find a boids simulation on the Web. (Currently, the most portable ones are written
in javascript, as is the mosh-pit simulator.) Compare the behavior to a video of starling

4In the current implementation, the speeds are shown on the lower right; the horizontal axis is not labeled,
but stays fixed as parameters change. The vertical axis is set by the peak of the distribution.
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murmuration. Describe one feature the boids capture well, and one that the boids fail
to mimic properly.

Later research on active matter focused on velocity alignment. Toner et al. [11] discuss
the behavior of wildebeests (also known as gnu), who graze as individuals for months,
but will at some point in the season start stirring around, pick a direction, and migrate
as a group – ending some two thousand miles away. How do the wildebeests reach
consensus on what direction to go? (Assume a cloudy day on a featureless Serengeti
plain. Assume also that they just want to find more water, or better grazing, and do
not need to find the Masai Mara where they spend the dry season.)

The mosh pit simulator aligns velocities by pulling each agent toward the average
heading of its neighbors,

F flock
i = α

Ni∑
j=1

vj

/∣∣∣∣∣
Ni∑
j=1

vj

∣∣∣∣∣ , (5)

where the sum runs over the Ni agents within four radii of agent i and the flocking
strength α controls the acceleration along the average velocity direction.

Reload, all active, N=40, flocking=speed=0, damping=0.2 and noise=0.2, and Change.
Let it equilibrate: the agents should mostly jiggle around without collisions, mimicking
wildebeests grazing. Add a flocking force of strength 0.2, and watch the collective
behavior of the system. You may increase or decrease the box size and the number of
particles (keeping the density fixed), depending on whether your computer is powerful
or struggling; if so, report the number and size you used.

(e) Describe the dynamics. Does the flock end up going largely in a single direction?
If so, is the direction of motion the same for different simulation runs? Describe the
speed distribution. Does the distribution appear to match the equilibrium distribution
in part (a)? Observe the bump in the speed distribution at low speeds. Identify the slow
particles in the animation. How do the slow particles forming this bump differ from the
rest? Increase the noise strength. Estimate the noise level at which the particles stop
moving collectively. (Note: If you wait long enough, the flocking direction will shift
because of finite-size fluctuations.)

The flocking simulations spontaneously break rotation invariance (see Chapter 9). This
is a surprising result, for technical reasons. Toner [11] illustrates this in a contest.
He asks whether physicists standing at random on a featureless, cloudy Serengeti plain
could all agree to point in the same direction. In analogy with eqn 5, one might imagine
each physicist points along the average angle given by its Ni near neighbors plus a small,
uncorrelated angular error ξ, with 〈ξjξk〉 = εδij:

θi = (1/Ni)

Ni∑
j=1

θj + ξi (6)
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We shall model the error as a finite-temperature deviation from a minimum energy
state with Hamiltonian given by a spring connecting θi to each of its neighbors. Let us
calculate the behavior of this model for a one-dimensional lattice of physicists:

H =
∑
i

1/2K(θi − θi−1)2. (7)

(This is a version of the one-dimensional XY model ignoring phase slip.)

(f) Calculate the forces on θj in eqn 7. Show that the energy is a minimum when θj
points along the average angle of its two near neighbors. Change variables to δj =
θj − θj−1, and calculate the thermal average 〈δ2

j 〉 at a temperature T .

(g) At what temperature will the root mean square error
√
〈δ2〉 between neighboring

physicists be one degree? At that temperature, how large must n be before the root
mean square error

√
〈(θn − θ0)2〉 is 180◦? (Assume K is in units of energy per radian

squared.)

What makes wildebeests surprising is that this result also holds in two dimensions.
No matter how small the noise ξ, physicists standing randomly on a plane cannot
break rotational symmetry by cooperating with their neighbors! This was proven by
Hohenberg [4] and Mermin and Wagner [5] (see note 12 on p. 252). Toner et al. [10] show
that this result does not apply to active matter systems, by developing a systematic
continuum hydrodynamic theory of flocking. What gives the wildebeests an advantage?
The physicists always observe the same neighbors. The active agents (wildebeests) that
are not going with the flow of their neighbors keep bumping into new agents – collecting
better information about the error in their way.

Finally, let us consider an even more basic class of active matter; particles that are
self-propelled but only interact via collisions. We use a propulsion term

F speed
i = µ(v0 − vi)v̂i, (8)

which accelerates or decelerates each particle toward a target speed v0 without changing
the direction. The damping constant µ now controls how strongly the target speed is
favored; for v0 = 0 we recover the equilibrium damping.

Such forces plus noise can be a rough model for bacteria propelling themselves in search
of food (Exercise 2.19), or for artificially–created ‘Janus’ particles that have one side
covered with a platinum catalyst that burns hydrogen peroxide, pushing it forward.

Reload parameters to default, then all active, N=200, flocking=0, speed v0=0.25,
damping=0.5 and noise=0, and Change. After some time, you should see most of
the particles moving along a common direction. (Increase Frameskip to speed the pro-
cess.) Again, you can increase the box size and number maintaining the density, but
here decreasing the box size below 30 will interfere with the behavior.

(h) Watch the speed distribution as you restart the simulation, turning off skipping
frames to see the behavior at early times. Does it get sharply peaked at the same time as
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the particles begin moving collectively? Now turn up frameskip to look at the long-term
motion. Give a qualitative explanation of what happens. Is more happening than just
selection of a common direction? (Hint: Understanding why the collective behavior
maintains itself is easier than explaining why it arises in the first place.)

We can study this emergent, collective flow by putting our system in a box – turning off
the periodic boundary conditions along x and y. Reload parameters to default, then all
active, N=300, flocking=0, speed v0=0.25, raise the damping up to 2 and set noise=0.
Turn off the periodic boundary conditions along both x and y, set the frame skip to
20, and Change. Again, box sizes as low as 30 will likely work.

After some time, you should observe a collective flow of a different sort. You can monitor
the average flow using the angular momentum (middle graph below the simulation).

(i) Increase the noise strength. Can you disrupt this collective behavior? Very roughly,
a what noise strength does the transition occur? (You can use the angular momentum
as a diagnostic.)

A key question in equilibrium statistical mechanics is whether a qualitative transition
like this is continuous (Chapter 12) or discontinuous (Chapter 11). Discontinuous tran-
sitions usually exhibit both bistability and hysteresis: the observed transition raising
the temperature or other control parameter is higher than when one lowers the pa-
rameter. Here, if the transition is abrupt, we should have a region with three states
– a melted state of zero angular momentum, and a collective clockwise and counter-
clockwise state.

Return to the settings for part (i), to explore more carefully the behavior near the
transition.

(j) Use the angular momentum to measure the strength of the collective motion (taken
from the center graph, treating the upper and lower bounds as ±1). Graph it against
noise as you raise the noise slowly and carefully from zero, until it vanishes. (You may
need to wait longer when you get close to the transition.) Graph it again as you lower
the noise. Do you find the same transition point on heating and cooling (raising and
lowering the noise)? Is the transition abrupt, or continuous? Did you ever observe
switches between the clockwise and anti-clockwise states?
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Graduate (6562 only)

3. Quantum measurement and entropy. (Quantum) ©3
Here we explore deep analogies between the collapse of the wavefunction during a
quantum measurement and the increase of entropy in statistical mechanics.

Entropy is an emergent property in statistical mechanics. There is no place in the
microscopic laws where entropy increases (Exercises 5.7 and 7.4). For large numbers of
particles, chaos and ergodicity leads to a loss of information that emerges as equilibra-
tion and entropy growth (Exercises 5.8 and 5.25).

In quantum mechanics, the process of measurement is also an emergent property.
Schrödinger’s time evolution has no place where the wavefunction collapses. When
a quantum subsystem interacts with a macroscopic object5 enough to change its state,
the quantum system will subsequently behave according to the Born rule. The Born
rule describes the interaction as the application of an operator O; if the initial quantum
state φ is decomposed into eigenstates φ =

∑
coξo of O then with probability |co|2 the

quantum subsystem will behave as if it were in state ξo all along (‘collapsing’ into that
state).

It is natural to describe this measurement without picking one of the observations,
treating the quantum subsystem after the interaction as a mixed state. Suppose we

begin with a photon in a diagonally polarized state φi =
(

1/
√

2

1/
√

2

)
, and apply an operator

O = ( 1 0
0 −1 ). that measures whether the polarization is vertical |φ〉 = ( 1

0 ) or horizontal
( 0

1 ).

(a) What is the density matrix ρi for the photon before the measurement? What is the
density matrix ρf after the measurement, according to the Born rule? How much has
the entropy changed? (If you write the bra 〈φi| as ( 1/

√
2 1/
√

2 ) then ρ naturally forms
as a 2× 2 matrix.)

The Born rule asserts that the measurement process alters the density matrix, changing
it from a pure state to a mixed, unpolarized state. It is unsatisfying in two ways. First,
it does not keep track of the effect of the quantum state on the measuring device: there
is no record of the measurement. Second, it provides no intuition as to why quantum
evolution should produce a collapse of this form.

Let us consider including the object’s many-body wavefunction Ψ(x) into the analysis.6

Before the measurement, the photon is not interacting with the object, so the system
(photon plus object) is in a product state

Φi = φiΨi(x) =
(

1/
√

2

1/
√

2

)
Ψi(x). (9)

5This object could be a material which exchanges energy with the quantum subsystem, as for a solid
whose phonons cause a qubit to suffer decoherence. It could be a measuring instrument, recording a value
stored in the qubit. Or it could be Geiger counter, rigged to a jar of poison gas in a box with a cat.

6We make the unrealistic assumption that the object starts in a pure state for simplicity: the same
argument works for a thermal state, or indeed any macroscopic density matrix for the object.
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We then perform a measurement – turning on a time-dependent Hamiltonian coupling
the photon to the object, turning it off again, and waiting until the object as a whole
received the information. After the measurement, the object is left in one of two distinct
many-body wavefunctions, Ψv(x) or Ψh(x), depending on whether the photon was
measured to be vertically or horizontally polarized. The photon’s state is unchanged (we
assume the object performed a ‘quantum non-demolition’ measurement, [12, Section
3.7]). Thus the system after the measurement is in the state

Φf =
(

1/
√

2
0

)
Ψv(x) +

(
0

1/
√

2

)
Ψh(x) (10)

(b) Write the density matrix for the system, both before and after the measurement, as
a 2 × 2 matrix of functions. (That is, we use a position-space basis for the object.
For example, the density matrix for the object before the measurement is ρ = |Ψi〉〈Ψi|,
which in position space is ρ(x′,x) = 〈x′|Ψi〉〈Ψi|x〉 = Ψi(x

′)Ψ∗i (x). Hint: Both matrices
should have off-diagonal terms.)

Since our system obeys Schrödinger’s equation, it ought to be still in a pure state.
Remember that, in position space, the trace of an operator M(x′, x) is given by inte-
grating over the diagonal Tr(M) =

∫
M(x, x)dx, and the square of the density matrix

is ρ2(x′, x) =
∫
ρ(x′, x′′)ρ(x′′, x)dx′′.

(c) Show that your initial density matrix is in a pure state by computing Tr(ρ2
i ). Show

that your final density matrix ρf is also in a pure state by computing the trace of its
square.

(d) What is the entropy change after the measurement, including both the photon and
the object? (Hint: You need not calculate anything, given your results of part (c).)

Our calculation so far has followed the microscopic rules – evolving the wavefunctions
of the photon and the object via Schrödinger’s equation. We now must make the same
kind of macroscopic approximations we use in explaining the increase of entropy. The
information about the ‘coherence’ between the two polarizations stored in the object
becomes unusable if the object is large and its response to the interaction is complex.

Specifically, the time-dependent Hamiltonian, in making the measurement, has left an
indelible imprint on the object. The vector x represents the configuration of gigantic
numbers of atoms, each of which has shifted in a way that depends upon whether the
photon was horizontally or vertically polarized. By the definition of a good measuring
apparatus, if the final positions of the atoms x has non-zero probability density of
arising for a vertical polarization (i.e., |Ψv(x)|2 > 0), then it must have no probability
of arising for a horizontal polarization (so |Ψh(x)|2 must be zero). Otherwise, those
shared configurations represent the likelihood us that the object has forgotten which
state it measured – that every trace of memory is removed on the atomic level.

It is more drastic even than this. One cannot act on Ψv to make it overlap with Ψh with
any sensible, local operator. (Think of the object as including an observer writing down
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the measurement. What quantum operator7 could erase that information?) Indeed, for
any operator B acting on the object,

〈Ψv|B|Ψh〉 =

∫
dx′dx〈Ψv|x′〉〈x′|B|x〉〈x|Ψh〉

=

∫
Ψ∗v(x′)B(x′,x)Ψh(x)dx′dx ≡ 0.

(11)

The two wavefunctions are not just orthogonal. They are not just with zero overlap.
It is sometimes said that the two wavefunctions live in different Hilbert spaces.8

How does this allow us to simplify the final density matrix you derived in part (c)? Sup-
pose we subject our photon and our object to a second observation operator Q, which
we represent in complete generality as a 2 × 2 matrix of operators in the polarization
space

Q =

(
A(x′,x) B(x′,x)
B∗(x′,x) C(x′,x)

)
. (12)

We know from eqn 7.5 that 〈Q〉 = Tr(Qρ).

We now demonstrate that the pure-state density matrix ρf , if the object is a good
measuring instrument, is equivalent to a mixed state ρ̂f .

(e) Using eqn 11 and your final density matrix from part (b), show that 〈Q〉 is equal to
Tr(Qρ̂f), where

ρ̂f =

(
1/2Ψv(x′)Ψ∗v(x) 0

0 1/2Ψh(x′)Ψ∗h(x)

)
. (13)

What terms changed between ρf from part (c) and ρ̂f? How do these changes represent
the loss of coherence between the two polarizations, stored in the object? Explain in
words how ρ̂f represents a photon and an object which has recorded the polarization.

(f) How much has the entropy changed after the measurement, using the emergent
density matrix ρ̂f eqn 13 that reflects the loss of coherence? (Warning: The entropy of
a state described by a wavefunction ψ(x) is zero (since it is a pure state). The entropy
is not −kB

∫
|ψ(x)|2 log |ψ(x)|2. That would be the entropy of the ensemble of states

generated after the position of the particle was observed. Hint: Ψv and Ψh are pure
states describing the object.)

We can now connect our discussion to the Born rule, by considering an effective theory
for the photon valid for any observable not also involving the object. This allows us
to ‘integrate out’ the object’s degrees of freedom to get an effective ‘reduced’ density

7The operator U(−t) that evolves the photon and the object backward in time would get them to overlap
perfectly, erasing all memory. Of course, reversing time would also allow entropy to decrease. Such operators
are declared not sensible.

8For the sophisticated, one could build an entire Fock space by applying (sensible, local) creation and
annihilation operators to the two states; the resulting Hilbert spaces would never overlap, in the limit of an
infinite-sized object.
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matrix just for the photon, as we do in classical statistical mechanics to derive free
energies (see note 5 on p. 141 and Section 6.7).

After the measurement, the object no longer interacts with the photon. Equation 12
still describes a general operator for our system. Operators which do not involve the
object will be independent of x and x′, the coordinates describing the object’s degrees
of freedom.

(g) Show that our density matrix ρ̂f reflecting decoherence is equivalent to the unpolar-
ized density matrix ρf given by the Born rule, for any operator that does not involve
the object. (Hint: Integrate out x and x′ in the trace.)

Thus the collapse of the wavefunction emerges naturally from the complexity and size of
macroscopic objects interacting with microscopic quantum subsystems. There remain
deep questions about quantum measurement (see Weinberg [12, Section 3.7]), but the
wavefunction ‘collapse’ is an emergent property of macroscopic observing systems, much
like the entropy.
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